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Abstract

In this dissertation, we examine duality in convex conic optimization problems and its

application in polynomial optimization. We derive new sufficient conditions for strong

duality in convex conic programming and provide necessary and sufficient conditions for

boundedness (or unboundedness) of nonempty sets of optimal solutions. We analyze the

strong duality property in conic reformulations of standard convex programming problems

and compare two versions of Slater conditions: the conic version for conic reformulations

of standard convex programming problems and the generalized Slater condition for stan-

dard convex programming problems. Within the field of polynomial optimization, we

concentrate on examining the properties of the cone of multivariate polynomials nonneg-

ative on a given nonempty set and their respective dual cones. We analyze the strong

duality property and its aspects in polynomial optimization problems.

Keywords: duality, convex conic optimization, polynomial optimization





Abstrakt

V tejto dizertačnej práci sa zaoberáme skúmaním duality v konvexných kónických op-

timalizačných úlohách a jej aplikácii v polynomiálnej optimalizácii. Odvádzame nové

postačujúce podmienky na platnosť silnej duality v konvexných kónických optimalizačných

úlohách spolu s nutnými a postačujúcimi podmienkami na ohraničenosť (neohraničenosť)

neprázdnych množín optimálnych riešení. Analyzujeme silnú dualitu pre kónické refor-

mulácie štandardných úloh konvexného programovania a porovnávame dve verzie Slaterovej

podmienky: kónickú verziu Slaterovej podmienky pre kónické reformulácie štandard-

ných úloh konvexného programovania a zovšeobecnenú verziu Slaterovej podmienky pre

štandardné úlohy konvexného programovania. V oblasti polynomiálnej optimalizácie sa

sústredíme na skúmanie vlastností kužeľov polynómov viacerých premenných nezáporných

na danej neprázdnej množine a ich duálnych kužeľov. Analyzujeme vlastnosť silnej duality

a jej aspektov pre úlohy polynomickej optimalizácie.

Kľúčové slová: dualita, konvexná kónická optimalizácia, polynomiálna optimalizácia





Preface

Duality is a philosophical term which can be defined as the quality or state of having

two different or opposite parts or elements. Broadly speaking, duality means having two

different views of the same object, which may but need not be equivalent. As a result,

duality offers us the choice to work with the more convenient option.

There are many examples of duality in mathematics. For instance, there exist numbers

and dual numbers; there exist vector spaces and dual vector spaces; a signal can be

described in the time domain and, dually, in the frequency domain; a closed convex set

can viewed as a union of points and, dually, as intersections of half-spaces containing the

set; a convex function may be viewed through points and, dually, through nonvertical

hyperplanes; there exist primal optimization problems and dual optimization problems.

Duality, particularly in mathematical optimization, is a fascinating concept and served

as a source of motivation for completing this thesis.

The core of the thesis is organized into two chapters. The first chapter deals with

Lagrangian duality in convex conic programming. It is divided into four sections as

follows: in Section 1.1 the standard formulation of a primal-dual pair of convex conic

programming problems is incorporated; in Section 1.2 the theorems of alternatives are

included; in Section 1.3 the strong duality property and its aspects are elaborated; in

Section 1.4 the strong duality property in convex programming is analyzed.

The second chapter focuses on the application of conic duality in polynomial optimiza-

tion. It is divided into three sections as follows: in Section 2.1 the polynomial optimization

problems, their equivalent conic reformulations and properties of the cone of polynomials

nonnegative on the given set are introduced; in Section 2.2 the duality results in polyno-

mial optimization problems are included; in Section 2.3 the application of the dual cone

theorem is demonstrated.

The appendix, containing standard definitions, notations, and necessary and/or useful

results, is divided into four sections: Section A contains the properties of cones and dual

cones; Section B is devoted to the relative interior of a convex cone; Section C contains

the results on closedness of the linear image of a convex cone; Section D contains the stan-

dard notations, definitions and basic results concerning the vector space of multivariate

polynomials.
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2for A,B ⊆ Rn, the Minkowski sum A+B is defined as A+B := {a+ b | a ∈ A, b ∈ B}





Introduction

Convex optimization

Convex optimization, or convex programming, is a subfield of mathematical optimization

concerning the problem of minimizing a convex function over a convex set, or equivalently,

maximizing a concave function over a convex set. Convex programming problems acquire

three important and useful properties:

1. Every local minimum is a global minimum.

2. The optimal solution set is a convex set.

3. If the objective is strictly convex, then the problem has at most one optimal solution.

It is due to these properties that convex optimization has become an important part of

the field of mathematical programming.

According to Dimitri Bertsekas [9], the prehistory of convex optimization is dated to

the first half of the 20th century. During this period, mathematicians such as Caratheodry,

Minkowski, Farkas and Steinitz concentrated on studying the properties of convex sets

and convex functions, taking no interest in optimization.

The history of convex optimization3 is considered to have started in the late 1940s

with one of its simplest subclass. In 1947, George B. Dantzig proposed the simplex

method for linear programming, see e.g. [21]. In 1949, Werner Fenchel published two

works [27] and [28] dealing with the so-called Fenchel duality theory, min-max in game

theory, subdifferentiability, optimality conditions, and sensitivity, however, not including

algorithms. Moreover, by that time a group of mathematicians working in the field of

mathematical optimization, including Fenchel, Von Neumann, Tucker, Kuhn and Nash,

3Note that terms “convex optimization” and “convex programming” were not used until much later.
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had formed at Princeton University. The results from this period can be found in the

book of Rockafellar in an extended and developed form, see [66].

Note that by the 1950s convex programming had not separated from nonlinear pro-

gramming yet. Nevertheless, the following results from this period play an important

role in convex programming nowadays. In 1950, Morton L. Slater in [69] discovered a

sufficient condition for strong duality in convex programming. Moreover, owing to the

Kuhn-Tucker theorem proved in 1951 by Harold W. Kuhn and Albert W. Tucker, the

Karush-Kuhn-Tucker (KKT) conditions are, in case of differentiability, sufficient condi-

tions for optimality, see e.g. [41]. These two results are connected within the theory of

convex programming in the following way: if the Slater condition is satisfied, the KKT

conditions are necessary and sufficient conditions for optimality in convex programming.

Convexity in nonlinear programming gained popularity with the invention of the inte-

rior point methods (IPM). In 1955, Ragnar Frisch proposed a logarithmic barrier method

that was later analyzed by Fiacco and McCormick in the 1960s, see e.g. [30] and [29].

According to [76], while barrier methods were widely used in the 1960s, they suffered

a severe decline in popularity in the 1970s due to various reasons, e.g. problems with

inherent ill-conditioning. One of the first interior point methods for linear and quadratic

programming, called the affine scaling method, was invented by Ilya I. Dikin in 1967, see

[23]. However, this result received little attention until 1984.

In 1984, Karmarkar reinvented, developed and extended the result of Dikin, proposing

an algorithm4 for linear programming which runs in polynomial time and is approximately

fifty times faster than the simplex method, see [39]. Karmarkar’s algorithm quickly re-

ceived publicity since it had outperformed the simplex method. In 1985, it was shown that

Karmarkar’s algorithm is formally equivalent to the classical logarithmic barrier method

applied to a linear programming problem, see [76]. In 1988, Karmarkar’s algorithm was

extended by Yurii Nesterov and Arkadi Nemirovski to convex programming problems,

based on a self-concordant barrier function used to encode the convex set, see e.g. [54],

[55] and [49]. Note that nowadays there exist three basic types of interior point methods:

potential reduction methods, path-following methods and primal-dual methods.

The development of interior point methods changed how linear and nonlinear pro-

gramming problems were perceived. Traditionally, linear programming problems had

4It is sometimes referred to as “Karmarkar’s projective method”.
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been regarded as easy problems to solve contrary to nonlinear programming problems.

However, with the development of interior point methods, this view proved to be rather

inappropriate. The appropriate view, according to [9], is to consider convex programming

problems easy to solve and nonconvex programming problems difficult to solve. It is due

to the fact that several classes of convex programming problems admit polynomial-time

algorithms, whereas problems of mathematical programming are in general NP-hard, see

e.g. [10].

An important outcome of the development of the interior point methods is the op-

timization over the cone of positive semidefinite matrices known as semidefinite pro-

gramming (SDP). Semidefinite programming became a new class of convex programming

problems in the early 1990s and soon became an attractive area of research. Primarily

motivated by the problems of combinatorial optimization and control theory, semidefinite

programming has numerous applications, including probability, statistics, machine learn-

ing, engineering, computational geometry, optimal experiment design, and many more,

see [1]. Fortunately, despite being much more general than linear programming problems,

semidefinite programming problems are not much harder to solve by means of the interior

point methods, see e.g. [75], [55] and [1].

Another class of convex programming that became popular in the 1990s is second

order cone programming (SOCP). Second order cone programming problems are convex

optimization problems of minimizing a linear function over the intersection of an affine

subspace and the second order cone5. Second order cone programming includes problems

such as linear programming problems, quadratically constrained convex quadratic pro-

gramming problems, problems involving fractional quadratic functions and the problem

of finding the smallest ball containing a given set of ellipsoids, see e.g. [2]. Second order

cone programming has various applications in combinatorial optimization, engineering,

robust optimization, and many more. Second order cone programming problems can be

formulated as semidefinite programming problems and therefore, second order cone pro-

gramming is placed between linear programming, quadratic programming and semidefinite

programming, see e.g. [46] and [2].

Linear programming, second order cone programming and semidefinite programming

have a common structure. All three are problems of minimizing a linear function over

5The second order cone is sometimes referred to as the Lorentz cone.
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the intersection of an affine subspace and a special convex cone. In the case of linear

programming, the corresponding cone is the nonnegative orthant, in the case of second

order cone programming, the corresponding cone is the second order cone, in the case

of semidefinite programming, the corresponding cone is the cone of positive semidefinite

matrices. Therefore, the natural conic generalization of these three classes lies in substi-

tuting the special convex cone with a general convex cone, which leads to convex conic

programming.

Convex conic programming

Convex conic programming, or, more precisely, convex conic linear programming, is a

special class of convex programming problems in which, in its standard form, a linear

function is minimized over the intersection of an affine subspace and a convex cone. In

addition to convexity, there might be other assumptions about the convex cone, such as

closedness, having a nonempty interior and not containing a straight line, which make the

class easier to analyze. The polyhedrality assumption leads to linear programming.

Geometric and topological properties of convex cones are essential aspects of convex

conic programming. Fundamental results regarding the geometry and topology of convex

cones can be found in standard convex analysis textbooks, e.g. [10], [66], [6], [28], or [15].

The characterization of the relative interior of a convex cone was studied in [47]. The

closedness of the linear image of a closed convex cone was analyzed in [61].

In [6] it was shown that every epigraph constraint in the form of f(x) ≤ t can be

embedded into a convex cone using the perspective mapping. Therefore, convex conic

programming can be viewed as a superclass of standard convex programming and standard

convex programming problems can obtain a different, conic, structure.

Furthermore, apart from linear programming, second order cone programming and

semidefinite programming, convex conic programming encompasses new classes of con-

vex programming. These classes typically pertain to the optimization over matrix cones,

such as copositive programming and completely positive programming. Copositive pro-

gramming problems are convex conic programming problems in which the corresponding

cone is the cone of copositive matrices6, see e.g. [40], [16], or [25]. In [16] it was shown

6A real symmetric matrix A ∈ Mn,n(R) is called copositive if for all vectors x ∈ Rn
+ it holds x

⊤Ax ≥ 0.
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that the dual cone to the cone of copositive matrices is the cone of completely positive

matrices7, therefore, copositive programming and completely positive programming are

linked through Lagrangian duality. Both copositive programming and completely posi-

tive programming have applications in control theory, graph theory, rigid body mechanics,

mixed-binary optimization, and others, see e.g. [16].

Other new classes of convex conic programming include programming over the ex-

ponential cone and programming over the power cone, see [4]. The exponential cone is

constructed by embedding the epigraph of the exponential function into a convex cone.

Therefore, the exponential cone can be used to model a variety of constraints involv-

ing exponentials and logarithms, such as entropy, relative entropy, softplus function and

Lambert W-function, see [4]. Problems of programming over the exponential cone are

comprised of problems of geometric programming, risk parity portfolio problems, prob-

lems of maximization of entropy, problems of logistic regression, and others, see [4]. The

power cone is the generalization of the second order cone, and hence, power cones are

used to model constraints with powers other than two, such as p-norm cones and geo-

metric mean, see [4]. Problems of programming over the power cone include the problem

of portfolio optimization with market impact, the maximum volume cuboid problem, the

p-norm geometric median problem, and the problem of maximum likelihood estimator of

a convex density function, see [4].

Another active area of research within the field of convex conic optimization is focused

on the development of effective methods and algorithms for solving convex conic optimiza-

tion problems, see e.g. [17], [3], [18], and [51]. Company MOSEK ApS specializes in conic

modeling together with the development of algorithms, based on interior point methods,

especially for the programming over the exponential cone (see [20]) and the programming

over the power cone. These algorithms prevalently rely on the duality theory which is

crucial in primal-dual algorithms and is also central to understanding sensitivity analysis

and infeasibility issues. It provides a simple and systematic way of obtaining nontrivial

lower bounds on the optimal value, see [4].

7A real symmetrix matrix A ∈ Mn,n(R) is completely positive if there exist m ∈ N and vectors

x1, . . . , xm ∈ Rn
+ such that A =

∑m
i=1 xix

⊤
i .
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Duality in convex conic programming

Duality in convex conic programming was studied in a general setting, starting with

[24], and followed by other authors, see also [1] for more references. In [14] and [13]

the authors use a minimal cone to transform the original problem to an equivalent one,

for which the Slater condition holds and, hence, the strong duality property is satisfied.

However, as mentioned in [65], the facial reduction procedure to obtain a minimal cone is

computationally unsatisfactory.

Duality theory in convex conic programming, with a focus on specific subclasses, has

been revisited by many authors since the invention of interior point methods in 1984.

One such paper is [32], where duality results for linear programming are obtained from

the perspective of the interior point methodology. In particular, it is shown that the

primal (dual) feasibility, together with the dual (primal) strict feasibility, is equivalent to

the nonemptiness and boundedness of the primal (dual) optimal solution set, respectively

(Theorem 3.2, [32]). Duality theory for semidefinite programming is studied in connection

with interior point methods in [1], see also [75] and [70] for a survey. Simple proofs for

the extension of the result of Theorem 3.2 in [32] to semidefinite programming are given

in [71].

The papers mentioned in the paragraph above study the Lagrangian dual (considered

in the convex optimization textbooks, such as [56], [6] or [15]) that requires the Slater

condition for the strong duality to hold. Failure of strong duality motivated other au-

thors, who attempted to construct a primal-dual pair satisfying strong duality without

any constraint qualification. The extended Lagrange-Slater dual was proposed in [65]

for semidefinite programming. In the paper [62], the facial reduction procedure of [13]

was applied to obtain strong duality for convex conic problems over symmetric cones.

Paper [73] dealt with general convex conic programs and it was shown that the minimal

representation of the problem guarantees the Slater condition and, therefore, also strong

duality. The same approach was applied in [40] for the class of copositive programming

problems.

Contrary to the approaches mentioned in the paragraph above, we study the standard

Lagrangian primal-dual pair of convex conic programming problems, see [1], [56], [6], [15],

where strong duality may fail. We derive new sufficient conditions for strong duality in
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convex conic programming along with necessary and sufficient conditions for boundedness

(or unboundedness) of nonempty sets of optimal solutions. In addition, we prove that if

the generalized Slater condition for standard convex conic programs is satisfied, then the

conic version of Slater condition for the respective conic reformulation is satisfied.

Polynomial optimization

Polynomial optimization is a subfield of mathematical optimization concerning the prob-

lem of minimizing a multivariate polynomial over a given nonempty set.

By introducing a new variable, which serves as a lower bound of the polynomial being

minimized on the given set, the problem of polynomial optimization can be equivalently

reformulated as a problem of finding the maximum lower bound of the polynomial on the

given set. In maximizing the lower bound, it is required that the difference between the

polynomial and the lower bound be a nonnegative polynomial on the given set.

This reformulation raises several questions, including whether one can optimize over

the set of polynomials nonnegative on the given set. It also prompts inquiries into the

structure of that set, whether one can test if a polynomial is nonnegative on the given

set, and whether such testing can be done efficiently.

In [38] it was shown that testing whether a polynomial of degree at least 4 is nonnega-

tive on a basic semialgebraic set is NP-hard, even if the given set is Rn. Moreover, it was

shown that unconstrained optimization of a quartic polynomial, optimization of a cubic

polynomial over the sphere and optimization of a quadratic polynomial over the sim-

plex are all NP-hard problems, see e.g. [53] and [22]. As a consequence, the mentioned

reformulation provides motivation for examining the structure of a set of multivariate

polynomials nonnegative on a given nonempty set.

The nonnegativity of polynomials on Rn has been widely examined for more than a

hundred years. It is obvious that a polynomial is nonnegative on Rn if it can be represented

as a finite sum of squares of other polynomials with a lower degree. However, it is not

obvious whether the converse holds. In fact, David Hilbert in [34] proved that there are

only three cases when the converse holds: for all odd-degree univariate polynomials, for

all quadratic polynomials, and for all two-variable quartic polynomials. Thus, in general

the set of sums-of-squares (SOS) polynomials is a proper subset of the set of polynomials
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nonnegative on Rn.

Both of these sets are indeed proper cones, as discussed in e.g. [11] and [52]. The most

important difference between these two cones is their structure. The cone of SOS polyno-

mials is closely linked with semidefinite programming. More precisely, testing whether a

given polynomial is SOS can be transformed into solving a feasibility problem of semidef-

inite programming, see [42]. On the other hand, no simple and tractable characterization

of the cone of nonnegative polynomials is known, see [44]. Therefore, the SOS cone serves

as a computational substitute for the cone of nonnegative polynomials. More details on

the SOS cone, its geometry and applications can be found in [58] and [59].

The nonnegativity of polynomials and polynomial optimization have been studied

within the context of convex and conic optimization and real algebra. In [68] it was

proposed that a convex optimization technique be used to minimize an unconstrained

multivariate polynomial. In [52] the author discussed the duality of cones of nonnegative

polynomials and moment cones. More specifically, a moment cone was shown to be

characterized by semidefinite constraints or, in other words, by linear matrix inequalities

on the condition that the corresponding dual cone, the cone of nonnegative polynomials,

was SOS-representable. The nonnegativity of polynomials with the use of real algebraic

results was discussed in [60]. Finally, with the real algebra result of Putinar [63], J. B.

Lasserre in [43] constructed a sequence of semidefinite program relaxations with optima

converging to the optimum of a polynomial optimization problem, known as SOS or

Lasserre hierarchy.

We focus on analyzing the properties of the set of polynomials nonnegative on a given

nonempty set using convex analysis and linear algebra results. Additionally, we offer a

representation of the dual cone corresponding to the cone of polynomials nonnegative on

the given set. We formulate the dual cone theorem. Furthermore, we combine the results

from Chapter 1 to derive findings pertaining to the zero duality gap in a primal-dual pair

of polynomial optimization problems, as well as necessary and sufficient conditions for the

nonemptiness and boundedness (or unboundedness) of sets of optimal solutions. Lastly,

we demonstrate the application of the dual cone theorem when searching for the explicit

characterizations of the set of univariate polynomials nonnegative on [−1, 1].



Lagrangian duality in convex conic

programming

In this chapter we will be focusing on the Lagrangian duality in convex conic programming.

In Section 1.1 we include the standard formulation of a primal-dual pair of convex conic

programs together with standard notions regarding convex conic programming problems.

Additionally, we cover fundamental results concerning the weak duality property, along

with a subsection on the recession cones associated with the primal and dual convex conic

programs. In Section 1.2 we present four theorems of alternatives for linear systems over

convex cones. Section 1.3 discusses strong duality results, including the zero duality gap

and necessary and sufficient conditions for the nonemptiness and boundedness, as well as

unboundedness, of sets of optimal solutions. It should be noted that Section 1.1, Section

1.2 and Section 1.3 were published in [72]. In Section 1.4 we concentrate on studying the

strong duality property in convex programming, more precisely, on comparing the conic

version of Slater condition with the generalized version of Slater condition for standard

problems of convex programming.

In this chapter we will be using the basic terminology and properties concerning cones

and their relative interior which can be found in Appendix A and Appendix B.

1.1 Primal and dual convex conic programs

In this section we introduce the primal-dual pair of convex conic programs in their stan-

dard form as it is formulated in e.g. [15, Section 4.6.1], [50, Section 4] or [6, Section

2.2].

In the following sections of this chapter we require that the coneK satisfy the following

24
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assumption.

Assumption 1. The cone K is a nontrivial convex cone. (see Definition A.2)

1.1.1 Primal convex conic program

Given vectors c ∈ Rn, b ∈ Rm, an m×n matrix A and a convex cone K ⊆ Rn, the convex

conic programming problem in standard form is formulated as

min c⊤x

s.t. Ax = b

x ∈ K.

(1.1)

The set of primal feasible points and the set of primal strictly feasible points are denoted

by P = {x ∈ K | Ax = b} and P0 = {x ∈ relint(K) | Ax = b}, respectively. Furthermore,

we define the optimal value of the problem (1.1) as p∗ = inf{c⊤x | x ∈ P} if P ≠ ∅ and

p∗ = +∞ otherwise. The primal optimal solution set is then P∗ = {x ∈ P | c⊤x = p∗}.

1.1.2 Dual convex conic program

The dual of problem of (1.1) is derived using the standard technique in the following way.

The Lagrange function L : K × Rm → R of the problem (1.1) is defined in the form

L(x, y) = c⊤x+ y⊤(b− Ax) = (c− A⊤y)⊤x+ b⊤y. (1.2)

Due to the properties of the dual cone (see Appendix A, Definition A.4) it can be calcu-

lated that

inf
x∈K

L(x, y) =

b⊤y, c− A⊤y ∈ K∗,

−∞, otherwise.

(1.3)

Introducing a slack variable s := c−A⊤y, one obtains the dual of problem of (1.1) in the

form

max b⊤y

s.t. A⊤y + s = c

s ∈ K∗.

(1.4)

The set of all dual feasible points of (1.4) is D = {(y, s) ∈ Rm×K∗ | A⊤y+s = c} and the

set of all dual strictly feasible points is D0 = {(y, s) ∈ Rm× relint(K∗) | A⊤y+ s = c}. If
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rank(A) = m, then there is one-to-one correspondence between the dual variables y and

s, that is, if (y1, s), (y2, s) ∈ D, then y1 = y2.

Remark 1.1. The assumption rank(A) = m is only technical, but it is needed when

analyzing the boundedness of D. Note that if rank(A) = m, then for every s such that

c− s ∈ S(A⊤) there exists a unique y = (AA⊤)−1A(c− s) such that A⊤y + s = c.

The optimal value of the problem (1.4) is defined as d∗ = sup{b⊤y | (y, s) ∈ D} if

D ̸= ∅ and d∗ = −∞ otherwise. Finally, the dual optimal solution set is denoted by D∗,

i.e. D∗ = {(y, s) ∈ D | b⊤y = d∗}.

1.1.3 Weak duality

Owing to the construction of the dual program (1.4), more precisely (1.3), the well-known

weak duality property holds between the primal program (1.1) and the dual program

(1.4). For the sake of completeness, we include the weak duality theorem together with

its consequences. (see [15, Section 5.2.2])

Theorem 1.1 (Weak duality). Assume the primal-dual pair of convex conic programs

(1.1) and (1.4). For an arbitrary primal feasible point x ∈ P and for an arbitrary dual

feasible point (y, s) ∈ D it holds that

c⊤x− b⊤y = s⊤x ≥ 0.

Corollary 1.1. Assume the primal-dual pair of convex conic programs (1.1) and (1.4).

a) It holds that p∗ ≥ d∗.

b) If for some vectors x̄ ∈ P and (ȳ, s̄) ∈ D holds c⊤x̄ = b⊤ȳ, then x̄ is optimal for

(1.1) and (ȳ, s̄) is optimal for (1.4).

c) If (1.1) is unbounded from below, then (1.4) is infeasible. If (1.4) is unbounded

from above, then (1.1) is infeasible.

1.1.4 Recession cones related to the primal and dual convex

conic programs

In the following sections we will be working with recession cones (see Appendix A, Def-

inition A.3) of P , D̃ = {s | (y, s) ∈ D}, P∗ and D̃∗ = {s∗ | (y∗, s∗) ∈ D∗}. We include

their characterizations in the two following propositions.
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Proposition 1.1. Assume the primal-dual pair of convex conic programs (1.1), and (1.4)

and assume that P and D̃ are nonempty. Moreover, assume that K is closed, then

RP = {d | Ad = 0, d ∈ K} = N (A) ∩K, (1.5)

RD̃ = {v | v ∈ S(A⊤), v ∈ K∗} = S(A⊤) ∩K∗, (1.6)

Proof. We only prove that RP = N (A) ∩K, the second statement can be proved analo-

gously. Take a d ∈ N (A)∩K and an arbitrary x ∈ P , then x+ γd ∈ K for all γ ≥ 0 and,

furthermore, A(x+ γd) = Ax+ γAd = Ax = b for all γ ≥ 0. Thus, {x+ γd | γ ≥ 0} ⊆ P ,

and, since x was chosen arbitrarily, we have that d ∈ RP . Now, take a d ∈ RP , then

∀x ∈ P and ∀γ ≥ 0 we have that x + γd ∈ P , which means that ∀γ ≥ 0 it holds that

A(x + γd) = Ax + γAd = b + γAd. Thus, Ad = 0. Moreover, ∀γ > 0 it holds that

x + γd ∈ K. Owing to the definition of a cone, we have that 1
γ
x + d ∈ K for all γ > 0.

Letting γ → +∞, we obtain that d ∈ cl(K) = K.

Remark 1.2. If the assumption on closedness of K is omitted, one may obtain that

RP ̸= N (A) ∩K, for instance

K = {(x1, x2)
⊤ | x1 > 0, x2 ≥ 0} ∪ {(0, 0)⊤}, A = (1, 0), b = 3 (1.7)

Apparently, N (A) ∩ K = {(0, 0)⊤}. However, P = {(3, t)⊤ | t ≥ 0}, thus, RP =

{(0, d2)⊤ | d2 ≥ 0} = RP = N (A) ∩ cl(K).

However, it is incorrect to claim that RP = N (A)∩cl(K), takeK as in (1.7), A = (0, 0)

and b = 0, thus N (A) = R2. We have that RP = K = R2 ∩K ̸= R2 ∩ cl(K).

Proposition 1.2. Define the extended matrices Ac = (A⊤ c)⊤ ∈ Mm+1,n(R) and Ab =

(A − b) ∈ Mn,n+1(R). Assume the primal-dual pair of convex conic programs (1.1) and

(1.4) and assume that P∗ and D̃∗ = {s∗ | (y∗, s∗) ∈ D∗} are nonempty. Moreover, assume

that K is closed, then

RP∗ = {d | Ad = 0, c⊤d = 0, d ∈ K} = N (Ac) ∩K, (1.8)

RD̃∗ = {v | (v⊤, 0)⊤ ∈ S(A⊤
b ) ∩ (K∗ × {0})}. (1.9)

Proof. The proof of these statements is analogous to the proof of Proposition 1.1.
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1.2 Theorems of alternatives

In this section, we present four theorems of alternatives for linear systems over cones. They

are divided into two groups, depending on whether, regarding the (strict) feasibility, they

are related to the primal or the dual conic program. Two of them are known as the Farkas

lemma, and the alternatives presented in the theorems are weak in general. For strong

alternatives, an additional assumption is required. Note that in the Farkas lemma, one

alternative is exactly the feasibility of the primal (dual) convex conic program. We also

formulate and prove a new different (primal-dual) pair of theorems of alternatives, where

one alternative is the strict feasibility of the primal (dual) convex conic program. The

alternatives in these theorems are strong (no additional assumption is required).

1.2.1 Primal theorems of alternatives

The first theorem is a generalization of the famous Farkas lemma for linear systems [26].

Various forms of the theorem have been studied within the last decades, also with the

connection to linear matrix inequalities and semidefinite programming, see [74], [1]. For

general conic programs, it was formulated by many authors in various forms; see e.g. [7],

[5], or [19] in more general terms.

Theorem 1.2. (Generalized Farkas lemma)

Assume that K ⊆ Rn is a cone satisfying Assumption 1, A is a given m × n, (m ≤ n)

matrix, and b ∈ Rm, c ∈ Rn are given vectors. At most one of the following statements is

true:

I ∃x ∈ K : Ax = b;

II ∃z : A⊤z ∈ K∗ and z⊤b < 0.

Moreover, if the convex cone A(cl(K)) (or alternatively the Minkowski sum cl(K) +

N (A))8 is closed, then exactly one of the statements is true.

Remark 1.3. Sufficient conditions for closedness of A(cl(K)) can be found in Theorem

C.2 or Table 1 in Appendix C.

In the following, we establish and prove a new theorem of alternatives, which deals

with the relative interior of the cone. It provides a strong alternative (and, therefore, also

8see Theorem C.1 in Appendix C
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an equivalent condition) to the strict feasibility of the primal program (1.1).

Theorem 1.3. Assume that K ⊆ Rn is a cone satisfying Assumption 1, A is a given

m × n, (m ≤ n) matrix, and b ∈ Rm, c ∈ Rn are given vectors. Exactly one of the

following statements is true:

I ∃x ∈ relint(K) : Ax = b;

II
[
∃z : A⊤z ∈ K∗ \ sub(K∗) and z⊤b ≤ 0

]
or[
∃z : A⊤z ∈ sub(K∗) and z⊤b ̸= 0.

]
Proof. First, we will show that I and II cannot hold at once. Assume the opposite,

then z̄⊤Ax̄ ≤ 0 for some x̄ and z̄ that fulfill I and II, respectively. However, from the

characterization (22) and (16), we obtain z̄⊤Ax̄ > 0, which is a contradiction. Thus, I

implies ¬II.

Now, we will show that ¬I implies II. Suppose that I does not hold, or equivalently

b /∈ A(relint(K)). With respect to vector b, there are two cases to consider:

1. b ∈ lin(A(K)) \ A(relint(K)),

2. b /∈ lin(A(K)).

Case 1. implies lin(A(K)) \ A(relint(K)) ̸= ∅, and hence A(relint(K)) = relint(A(K))

is nontrivial. This implies that cl(A(K)) is nontrivial and so is the dual cone [A(K)]∗ =

{z | A⊤z ∈ K∗}, thus [A(K)]∗\sub([A(K)]∗) = {z | A⊤z ∈ K∗\sub(K∗)} ≠ ∅. Now, if b ∈

cl(A(K)), then from (22) we get that there exists a vector z such that A⊤z ∈ K∗\sub(K∗)

and z⊤b ≤ 0, which implies that the first part of II holds. If b /∈ cl(A(K)), there exists

a vector z such that A⊤z ∈ K∗ and z⊤b < 0. Since b ∈ lin(cl(A(K))) = lin(A(K)), it

follows that v⊤b = 0 for all v such that A⊤v ∈ sub(K∗) and, thus, A⊤z /∈ sub(K∗), which

again implies that the first part of II holds.

Consider case 2. Since b /∈ lin(A(K)), it follows that there exists a vector z ∈

lin(A(K))⊥ = sub([A(K)]∗) (see (16)) such that z⊤b ̸= 0. Thus, the second part of

II holds.

Remark 1.4. Consider the primal-dual pair of programs (1.1) and (1.4). According to

the proof of Theorem 1.3, if P0 = ∅, then there exists a vector u = A⊤z ∈ RD̃. Moreover,

it can be said that
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• z⊤b ≤ 0, if b ∈ cl(A(K)),

• z⊤b < 0, if b /∈ cl(A(K)).

This means that, supposing that D ≠ ∅ and b /∈ cl(A(K)) (which implies that the

primal problem (1.1) is infeasible), we get that for any (y, s) ∈ D we have {(y, s) +

γ(−z, A⊤z) | γ ≥ 0} ⊆ D with b⊤(y − γz) → +∞ as γ → +∞. Therefore, the dual

problem (1.4) is unbounded.

Remark 1.5. It can be easily seen that if A is a full-rank m × n matrix (m ≤ n), i.e.

the existence of the solution of Ax = b is guaranteed, and the condition S(A⊤) ⊆ lin(K)

holds, i.e. S(A⊤) ∩ sub(K∗) = {0}, then the alternatives in Theorem 1.3 simplify to

I ∃x ∈ relint(K) : Ax = b;

II ∃z : A⊤z ∈ K∗ \ sub(K∗) and z⊤b ≤ 0.

Moreover, for solid cones, the alternatives in Theorem 1.3 can be reduced to

I ∃x ∈ int(K) : Ax = b;

II ∃z ̸= 0 : A⊤z ∈ K∗ and z⊤b ≤ 0.

This last special case was formulated in [7] and [8], and also for the semidefinite cone in

[71].

Remark 1.6. From (16), it follows that if ∃x ∈ K : Ax = b, that is, the problem (1.1) is

feasible, then the alternatives in Theorem 1.3 also can be simplified as stated in Remark

1.5.

1.2.2 Dual theorems of alternatives

In this subsection, we formulate the dual counterparts of Theorem 1.2 and Theorem 1.3.

The next theorem is the “dual variant” of the generalized Farkas lemma (Theorem

1.2). It is formulated in [31] for linear systems and is generalized to the case of symmetric

matrices and linear matrix inequalities in [74]. A similar statement is included in [6], how-

ever, the strong alternative condition is formulated in terms of solvability of a perturbed

system.

Theorem 1.4. Assume that K ⊆ Rn is a cone satisfying Assumption 1, A is a given

m × n, (m ≤ n) matrix, and b ∈ Rm, c ∈ Rn are given vectors. At most one of the

following statements is true:
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I ∃y : c− A⊤y ∈ K∗;

II ∃z ∈ cl(K) : Az = 0 and c⊤z < 0.

Moreover, if the cone S(A⊤) +K∗ is closed, then exactly one of the statements is true.

Remark 1.7. Sufficient conditions for closedness of S(A⊤)+K∗ can be found in Theorem

C.2 or Table 1 in Appendix C.

Finally, we establish and prove a new theorem of alternatives, which deals with the

relative interior of the cone K∗. It provides a strong alternative (and therefore also an

equivalent condition) to the strict feasibility of the dual program (1.4).

Theorem 1.5. Assume that K ⊆ Rn is a cone satisfying Assumption 1, A is a given

m × n, (m ≤ n) matrix, and b ∈ Rm, c ∈ Rn are given vectors. Exactly one of the

following statements is true:

I ∃y : c− A⊤y ∈ relint(K∗);

II
[
∃z ∈ cl(K) \ sub(cl(K)) : Az = 0 and c⊤z ≤ 0

]
or[
∃z ∈ sub(cl(K)) : Az = 0 and c⊤z ̸= 0

]
.

Proof. First we will show that I implies ¬II. Assume by contradiction that I and II

hold at once. Then z⊤(c − A⊤ȳ) = z̄⊤c ≤ 0 for some ȳ and z̄ that fulfill I and II,

respectively. However, from characterization (23) and (17), we obtain z̄⊤c > 0, which is

a contradiction.

Now we will show that ¬I implies II. Suppose that ¬I holds or equivalently S(A⊤)+

relint(K∗) = relint(S(A⊤) + K∗) = ∅. Regarding the vector c, there are two cases to

consider.

1. c ∈ lin(S(A⊤) +K∗) \ relint(S(A⊤) +K∗),

2. c /∈ lin(S(A⊤) +K∗).

Case 1. Since lin(S(A⊤)+K∗)\relint(S(A⊤)+K∗) ̸= ∅, it follows that relint(S(A⊤)+K∗)

and hence cl(S(A⊤) + K∗) and (S(A⊤) + K∗)∗ = N (A) ∩ cl(K) are nontrivial. If c ∈

cl(S(A⊤) +K∗), then from (23) we get that there exists a vector z ∈ cl(K) \ sub(cl(K))

such that Az = 0 and c⊤z ≤ 0, which implies that the first part of II holds. If c /∈

cl(S(A⊤) + K∗), there exists a vector z ∈ cl(K) such that Az = 0 such that c⊤z < 0.



1.2. THEOREMS OF ALTERNATIVES 32

Since c ∈ lin(cl(S(A⊤) + K∗)) = lin(S(A⊤) + K∗), it follows that c⊤z = 0 for all

v ∈ N (A) ∩ sub(cl(K)) and, thus, z /∈ sub(cl(K)), which again implies that the first

part of II is valid.

Case 2. Since c /∈ lin(S(A⊤) + K∗), from (17) it follows that there exists a vector

z ∈ N (A) ∩ sub(cl(K)) such that c⊤z ̸= 0, which implies that the second part of II

holds.

Remark 1.8. Consider the primal-dual pair of programs (1.1) and (1.4). According to

the proof of Theorem 1.5, if D0 = ∅, then there exists a vector z ∈ N (A) ∩ cl(K) such

that

• c⊤z ≤ 0, if c ∈ cl(S(A⊤) +K∗),

• c⊤z < 0, if c /∈ cl(S(A⊤) +K∗).

This means that, supposing that P ≠ ∅ and c /∈ cl(S(A⊤) + K∗) = R∗
P (which implies

that the dual problem (1.4) is infeasible), we get that for any x ∈ P we have {x+γz | γ ≥

0} ⊆ P with c⊤(x + γz) → −∞ as γ → +∞. Therefore, the primal problem (1.1) is

unbounded.

Remark 1.9. Theorems 1.4 and 1.5 can be obtained from Theorems 1.2 and 1.3, respec-

tively, by rewriting the alternative I using the system of linear equations c − A⊤y = s

and the cone Rm ×K∗. For the reader’s convenience, we have included a straightforward

proof of Theorem 1.5.

Remark 1.10. Analogously to the case of Theorem 1.3 and Remark 1.5, it can be seen

that, requiring the condition N (A) ⊆ lin(K∗) to hold (implying N (A) ∩ sub(cl(K)) =

{0}), the alternatives in Theorem 1.5 can be simplified to

I ∃y : c− A⊤y ∈ relint(K∗);

II ∃z ∈ cl(K) \ sub(cl(K)) : Az = 0 and c⊤z ≤ 0.

Furthermore, if K∗ is solid (or cl(K) is pointed), the alternatives in Theorem 1.5 reduce

to

I ∃y : c− A⊤y ∈ int(K∗);

II ∃z ∈ cl(K) : Az = 0 and c⊤z ≤ 0.

This last special case has been considered for the semidefinite cone in [71].
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Remark 1.11. From (17), it follows that if ∃y : c − A⊤y ∈ K∗, that is, the problem

(1.4) is feasible, then the alternatives in Theorem 1.5 also can be simplified as stated in

Remark 1.10.

1.3 Strong duality

1.3.1 Zero duality gap

The famous Slater result that the strict feasibility of the convex problem implies the strong

duality property d∗ = p∗ and, provided the optimal value is finite, also the existence of a

dual optimal solution, is widely known. Its conic version was shown e.g. in [50] and [6]

for proper cones. In [67], the strong duality property was studied for closed and solid, but

not necessarily finite dimensional cones. Some duality results for general convex cones

can be found in [47].

If one of the primal-dual pair of programs (1.1) and (1.4) is unbounded, the other is

infeasible (see Corollary 1.1) and in this trivial case p∗ = d∗. The basic idea behind the

proof of the nontrivial strong duality property is linked with the generalized Farkas lemma

and its dual counterpart (Theorem 1.2 and Theorem 1.4). In the generalized version of

the theorems of alternatives, the assumption of closedness of the linear image of a convex

cone (or closedness of the Minkowski sum of a convex cone and a linear subspace in the

dual version, respectively) is needed. However, the closedness assumption is guaranteed

by the existence of the interior point in the dual (primal) feasible set (see Appendix C).

The known strong duality results for the convex conic problems are formulated in the

next two theorems, see also [47] (Theorem 7) or, for conic programs with proper cones,

in [6] (Theorem 2.4.1).

Theorem 1.6 (Strong duality). Consider the primal-dual pair of programs (1.1) and

(1.4), where the cone K satisfies Assumption 1. Then

a) if D ≠ ∅, d∗ < +∞ and Ac(cl(K)) is closed, then p∗ = d∗ and P∗ ̸= ∅;

b) if P ≠ ∅, p∗ > −∞ and S(Ab) + (K∗ × {0}) is closed, then p∗ = d∗ and D∗ ̸= ∅,

where Ac = (A⊤ c)⊤ and Ab = (A − b).

Recall that the proof of Theorem 1.6 is based on Theorem 1.2, Theorem 1.4 and the

weak duality property, and follows the standard scheme typically used in linear program-
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ming, or the one given e.g. in [6] for convex conic programs. The sufficient conditions

that guarantee the closedness of Ac(cl(K)), and S(Ab) + (K∗ × {0}) are D0 ̸= ∅ and

P0 ̸= ∅, respectively, and the rest follows from Theorem C.2. This leads us to the follow-

ing statement.

Theorem 1.7. Consider the primal-dual pair of programs (1.1) and (1.4), where the cone

K satisfies Assumption 1.

a) If D0 ̸= ∅ and P ≠ ∅, then p∗ = d∗ and P∗ ̸= ∅.

b) If P0 ̸= ∅ and D ≠ ∅, then p∗ = d∗ and D∗ ̸= ∅.

1.3.2 Necessary and sufficient conditions for nonemptiness and

boundedness of sets of optimal solutions

The assumptions D0 ̸= ∅,P0 ̸= ∅ in statements a) and b) of Theorem 1.7, correspond to

alternative I in Theorem 1.5 and Theorem 1.3, respectively. This gives us an opportunity

to combine the results and establish necessary and sufficient conditions for boundedness of

the optimal solution sets P∗ and D∗. We obtain a new result, stated in the next theorem.

Theorem 1.8. Consider the primal-dual pair of programs (1.1) and (1.4), where the cone

K satisfies Assumption 1.

a) Assume that K is closed. The set P∗ is nonempty and bounded if and only if P ̸= ∅,

D0 ̸= ∅ and sub(RP) = {0}.

b) Suppose that rank(A) = m. The set D∗ is nonempty and bounded if and only if

D ≠ ∅, P0 ̸= ∅ and sub(RD̃) = {0}.

Proof. a) First, assume that the set P∗ is nonempty and bounded. Then clearly P ≠ ∅

and we only need to show that D0 ̸= ∅ and sub(RP) = {0}. Take x∗ ∈ P∗ and assume by

contradiction that the set D0 is empty. By applying Theorem 1.5 we obtain that:

- either there exists z ∈ K \ sub(K) such that Az = 0 and c⊤z ≤ 0 or

- there exists z ∈ sub(K) such that Az = 0 and c⊤z < 0.

Consider the first case - then clearly for any γ ≥ 0 we have x∗ + γz ∈ P∗. We have

constructed a ray in the optimal solution set P∗, which contradicts its boundedness.

Now consider the second case - then for any γ ≥ 0 we have x∗ + γz ∈ P , however
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c⊤(x∗ + γz) < p∗, which contradicts the optimality of x∗.

Now assume that D0 ̸= ∅ and sub(RP) ̸= {0}. From (18) it follows that sub(RP) =

N (A)∩ sub(K). We have that there exists 0 ̸= z ∈ sub(K) such that Az = 0. This time,

the strong alternatives in Theorem 1.5 imply c⊤z = 0. Again, we can construct a ray

{x∗ + γz | γ ≥ 0} ⊆ P∗, which contradicts the boundedness of P∗.

Conversely, suppose P ̸= ∅, D0 ̸= ∅ and sub(RP) = {0}. From Theorem 1.7 a) we

obtain that P∗ ̸= ∅. Assume by contradiction that P∗ is unbounded, i.e. x̂+ γw ∈ P∗ ⊆

P ∀γ ≥ 0. Hence, the equalities c⊤w = 0 and Aw = 0 hold and for an arbitrary ŷ ∈ K∗

we have that

x̂⊤ŷ + γw⊤ŷ ≥ 0, ∀γ ≥ 0. (1.10)

Since the expression on the left in (1.10) is bounded below and γ ≥ 0, it must hold

w⊤ŷ ≥ 0. Since ŷ ∈ K∗ was arbitrary, we get that w ∈ K∗∗ = K. Recall that w ∈ N (A)

and c⊤w = 0. If w /∈ sub(K), then by Theorem 1.5 we get a contradiction with the

assumption D0 ̸= ∅. On the other hand, 0 ̸= w ∈ sub(K) contradicts the assumption

N (A) ∩ sub(K) = sub(RP) = {0}.

b) This statement can be proved analogously, with the use of Theorem 1.3. The assump-

tion rank(A) = m is technical yet necessary to ensure the one-to-one correspondence

between the dual variables y and s. It is only needed to argue that there would have to

be a non-zero vector in sub(RD̃) = S(A⊤)∩ sub(K∗) if we contradictorily assume that D∗

is unbounded.

The assumption in Theorem 1.8 a) that K is closed is necessary and cannot be left

out as it is shown in the following example.

Example 1.1. Consider the primal convex conic program in the form (1.1)

min − x1 + x2

s.t. x1 − x2 = 0, (1.11)

x ∈ K = {(x1, x2)
⊤ | x1 − x2 > 0, x1 − 2x2 ≤ 0} ∪ {0},
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and the corresponding dual program in the form (1.4)

max 0

s.t. s = (−1− y, 1 + y)⊤ ∈ K∗,

K∗ = {(s1, s2)⊤ | s1 + s2 ≥ 0, 2s1 + s2 ≥ 0},

and

relint(K∗) = int(K∗) = {(s1, s2)⊤ | s1 + s2 > 0, 2s1 + s2 > 0}.

We have that

P∗ = P = {(0, 0)⊤},

thus P∗ is nonempty and unbounded. Obviously, P ≠ ∅ and sub(RP) = {0}, since K

is pointed. However, D0 = ∅ and thus Theorem 1.8 a) fails to hold. Note that if we

replace K with cl(K) in the primal program (1.11), the optimal solution set will clearly

be nonempty and unbounded, and thus Theorem 1.8 a) will hold.

If the cone K is pointed, then sub(RP) = {0}. Similarly, if the cone K∗ is pointed

(i.e. the cone K is solid), then sub(RD̃) = {0}. These special cases are covered in the

following corollary. Clearly, if K is proper, then both equivalences a), b) in Corollary 1.2

hold.

Corollary 1.2.

a) Suppose K is closed and pointed. The set P∗ is nonempty and bounded if and only

if P ̸= ∅ and D0 ̸= ∅.

b) Suppose K is solid. The set D∗ is nonempty and bounded if and only if rank(A) = m,

D ≠ ∅ and P0 ̸= ∅.

Corollary 1.3. Consider the primal-dual pair of programs (1.1) and (1.4), where the

cone K satisfies Assumption 1.

a) Suppose that K is closed. If the set P∗ is nonempty and bounded, then Ac(cl(K))

is closed.

b) Suppose that rank(A) = m. If the set D∗ is nonempty and bounded, then S(Ab) +

(K∗ × {0}) is closed.
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1.3.3 Discussion of the results in [47]

Remark 1.12. Consider the set D̃ = {s | (y, s) ∈ D} and the linear subspaces sub(RD̃)

and sub(RD̃)
⊥. Then for D̃ it holds that D̃ = (D̃ ∩ sub(RD̃)

⊥) + sub(RD̃) (see Lemma

A.1). The authors of [47] use this fact to define the so-called normalized dual feasible set

D̃N = D̃∩sub(RD̃)
⊥ and the normalized dual optimal solution set as D̃∗

N = D̃∗∩sub(RD̃)
⊥,

where D̃∗ = {s∗ | (y∗, s∗) ∈ D∗}. They also study the boundedness of D̃∗
N and prove that

D ̸= ∅,P0 ̸= ∅ if and only if the set D̃∗
N is nonempty and bounded. (See Theorem 5 in

[47].) Moreover, it is easy to show that under assumption P0 ̸= ∅ it holds sub(RD̃) = {0}

iff D̃∗ = D̃∗
N . Therefore, the result of Theorem 1.8 b), reformulated in terms of the

normalized dual optimal solution set, states

- If D ≠ ∅,P0 ̸= ∅, sub(RD̃) = {0}, then D̃∗ = D̃∗
N and it is nonempty and bounded.

- If D̃∗ is nonempty and bounded, then D ≠ ∅,P0 ̸= ∅, sub(RD̃) = {0}, i.e. D̃∗ = D̃∗
N .

The authors of [47] do not explicitly formulate an analogous result dealing with the

normalized primal optimal solution set. The main reason is that they consider the primal

conic program with a general (not necessarily closed) convex cone. However, for a closed

convex cone K we may consider the linear subspaces sub(RP) and sub(RP)
⊥, and the

normalized primal optimal solution set as PN = P ∩ sub(RP)
⊥. Then the result of

Theorem 1.8 a), reformulated in terms of the normalized primal optimal solution set,

states

- If P ̸= ∅,D0 ̸= ∅, sub(RP)
⊥ = {0}, then P∗ = P∗

N and it is nonempty and bounded.

- If P∗ is nonempty and bounded, then P ̸= ∅,D0 ̸= ∅, sub(RP)
⊥ = {0}, i.e. P∗ =

P∗
N .

As stated in Theorem 1.7 and Theorem 5 in [47] (see Remark 1.12) The assumption

P0 ̸= ∅,D ≠ ∅ guarantees that the sets D̃∗ and D̃∗
N are nonempty. However, the bound-

edness of D̃∗ is not guaranteed. This is demonstrated in the following simple example.

Example 1.2. Consider the primal convex conic program in the form (1.1)

min −5x1

s.t.

1 1 0

1 0 1

x =

2

2


x ∈ K := {(s, t, t)⊤ | s ∈ R, t ≥ 0}
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and the corresponding dual program in the form (1.4)

max 2y1 + 2y2

s.t. s = (−5− y1 − y2,−y1,−y2)
⊤ ∈ K∗

K∗ = {(0, z2, z3)⊤ | z2 + z3 ≥ 0}.

Obviously P0 ̸= ∅, D ̸= ∅, A is a full rank matrix, but sub(RD̃) = {(0, z2,−z2)
⊤ | z2 ∈

R} ̸= {0}. From Theorem 5 in [47] we have that D̃∗
N is nonempty and bounded. It can

be calculated that D̃∗
N = {(0, 2.5, 2.5)⊤}. However, from Theorem 1.8 b) we have that D∗

is unbounded or empty. In fact, it is unbounded since

D∗ = {((−5− r, r)⊤, (0, 5 + r,−r)⊤) | r ∈ R}.

and so is D̃∗ = {(0, 5 + r,−r)⊤ | r ∈ R}. Thus Theorem 5 in [47] does not guarantee the

boundedness of D̃∗.

1.3.4 Necessary and sufficient conditions for nonemptiness and

unboundedness of sets of optimal solutions

Theorem 1.9. Consider the primal-dual pair of programs (1.1) and (1.4), where the cone

K satisfies Assumption 1.

a) Assume that N (Ac) ∩ relint(K) ̸= ∅. D ≠ ∅, P ̸= ∅ if and only if p∗ = d∗, and the

set P∗ is nonempty and unbounded.

b) Assume that S(A⊤
b ) ∩ relint(K∗ × {0}) ̸= ∅. D ̸= ∅, P ̸= ∅ if and only if p∗ = d∗,

and the set D∗ is nonempty and unbounded.

Proof. a) Note that the assumption N (Ac)∩ relint(K) ̸= ∅ is equivalent to the existence

of a vector v ∈ N (A) ∩ relint(K) such that c⊤v = 0.

Frist, assume that D ̸= ∅ and P ≠ ∅. The assumption N (Ac) ∩ relint(K) ̸= ∅ is

equivalent to (ii-b) in Table 1 applied to the linear map Ac = (A⊤ c)⊤. Then, according

to Theorem C.2 b), the cone Ac(cl(K)) is a linear subspace (hence closed). Then from

Theorem 1.6 a) we get that P∗ ̸= ∅ and p∗ = d∗. Thus, if x∗ ∈ P∗ and v ∈ N (Ac) ∩

relint(K), then clearly x∗ + αv ∈ P∗, ∀α ≥ 0. Therefore P∗ must be unbounded.

Now, suppose that P∗ is nonempty and unbounded, and it holds that p∗ = d∗. Clearly,

P ̸= ∅ and it remains to show that D ≠ ∅. Since N (Ac) ∩ relint(K) ̸= ∅, we have that

N (A) ∩ relint(K) ̸= ∅ and thus (ii-b) in Table 1 holds. According to Theorem C.2
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b) we obtain that S(A⊤) + K∗ is closed. This means that the alternatives in Theorem

1.4 are strong: one and only one of them holds. Now, assume that D = ∅, which is

equivalent to ¬I. It follows that II holds and thus there exists a vector z ∈ cl(K)

such that Az = 0 and c⊤z < 0. Take x∗ ∈ P∗ and v ∈ N (Ac) ∩ relint(K). From

(24) it follows that v + z ∈ relint(K). We will show that the vector x∗ + v + z ∈ P .

Again, from (24) we have that x∗ + v + z ∈ relint(K) ⊆ K, moreover, it holds that

A(x∗ + v + z) = Ax∗ +A(v + z) = Ax∗ = b, thus x∗ + v + z ∈ P . However, we have that

c⊤(x∗ + v+ z) = c⊤x∗ + c⊤z < c⊤x∗ = p∗, which is a contradiction with the optimality of

x∗.

b) Note that the assumption S(A⊤
b ) ∩ relint(K∗ × {0}) ̸= ∅ is equivalent to the

existence of a vector z such that A⊤z ∈ relint(K∗) and b⊤z = 0.

This statement can be proved analogously, with the use of (ii-a) in Table 1, Theorem

C.2 a), Theorem 1.6 b) and Theorem 1.2. Note that the assumption S(A⊤
b )∩relint(K∗×

{0}) ̸= ∅ implies that condition (ii-a) in Table 1 holds, moreover, it is equivalent to

condition (ii-a) in Table 1 applied to the linear map Ab = (A −b) and the cone K×R.

The following example demonstrates that the global assumption N (Ac)∩relint(K) ̸=

∅ in Theorem 1.9 a) is sufficient but not necessary for the equivalence to hold: the

ray defined by v ∈ N (A) ∩ relint(K) in part a) may fail to exist. Similarly, the global

assumption S(A⊤
b )∩relint(K∗×{0}) ̸= ∅ in Theorem 1.9 b) is sufficient but not necessary

for the equivalence to hold: the vector z such that A⊤z ∈ relint(K∗) in part b) may fail

to exist.

Example 1.3. Consider the primal convex conic program in the form (1.1)

min x1 + x3

s.t. x1 + x3 = 0

x ∈ K := {(x1, x2, x3)
⊤ |
√

x2
1 + x3

2 ≤ x3}

and the corresponding dual program in the form (1.4)

max 0

s.t. s = (1− y, 0, 1− y)⊤ ∈ K∗

K∗ = {(s1, s2, s3)⊤ |
√

s21 + s22 ≤ s3} = K.

We have that

P∗ = P = {t(−1, 0, 1)⊤ | t ≥ 0} ≠ ∅,
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thus P∗ is nonempty and unbounded. Moreover, it holds p∗ = d∗ = 0. We also have that

D∗ = D = {(1− y, 0, 1− y)⊤ | y ≤ 1} ≠ ∅,

However, since relint(K) = int(K) = {(x1, x2, x3)
⊤ |

√
x2
1 + x3

2 < x3}, we have that

N (A) ∩ relint(K) = ∅, which implies that there does not exist v ∈ N (A) ∩ relint(K)

such that c⊤v = 0.

Similarly, there is no such z ∈ R for which it holds z(1, 0, 1)⊤ ∈ relint(K∗).

1.3.5 Summary of sufficient conditions for strong duality

If we put together results from Theorem 1.7, Theorem 1.8, Remark 1.12 and Theorem

1.9, we can list eight sufficient conditions for strong duality property p∗ = d∗, see Table

1.1.

Table 1.1: List of sufficient conditions for zero optimal duality gap, i.e. p∗ = d∗.

(P)

P0 ̸= ∅

P∗ ̸= ∅ and bounded provided that K is closed

P∗
N ̸= ∅ and bounded provided that K is closed

D ≠ ∅, P ≠ ∅, N (Ac) ∩ relint(K) ̸= ∅.

(D)

D0 ̸= ∅

D∗ ̸= ∅ and bounded

D̃∗
N ̸= ∅ and bounded

D ≠ ∅, P ≠ ∅, S(A⊤
b ) ∩ relint(K∗ × {0}) ̸= ∅.

1.4 Strong duality in convex programming

In this section we concentrate on standard problems of convex programming. It is a

known fact that, due to an equivalent conic reformulation, these problems form a special
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class of convex conic programming problems, see e.g. [15], [6], or [57]. Therefore, the

generalized Slater condition (see [15, Section 5.2.3]) for convex programming problems

and its conic version (Theorem 1.6) for convex conic problems are expected to be related

in some way. In this section we examine the sufficient conditions for strong duality in the

respective conic reformulation of a standard problem of convex programming and compare

the results with the generalized Slater condition for convex programming.

1.4.1 Primal and dual convex program

The standard form of a primal convex program (see [15, Section 5.1.1]) is formulated as

follows

min f0(x)

s.t. fi(x) ≤ 0, i = 1, 2, . . . , k, (1.12)

gj(x) ≤ 0, j = 1, 2, . . . , l,

Ax = b,

where fi : ∅ ̸= Xi ⊆ Rn → R, i = 0, 1, . . . k are convex functions9 defined on open convex

sets Xi, gj(x) := α⊤
j x + βj, j = 1, 2, . . . , l are affine functions10, A is an m× n matrix11,

and b ∈ Rm. The common domain of functions fi, i = 0, 1, . . . , k is denoted X :=
⋂k

i=0Xi,

which is an open convex set. For problem (1.12) the following notions are usually defined

• the set of primal feasible points PK := {x ∈ X | Ax = b, fi(x) ≤ 0, gj(x) ≤ 0, i =

1, 2, . . . , k, j = 1, 2, . . . , l};

• the primal optimal value p∗K := infx{f0(x) | x ∈ PK}, if PK ̸= ∅; and p∗K := +∞, if

PK = ∅;

• the set of primal optimal points P∗
K := {x ∈ PK | f0(x) = p∗K}.

The Lagrange function L : X × Rm × Rk
+ × Rl

+ → R of problem (1.12) takes the

following form

L(x, y, λ, µ) = f0(x) + y⊤(b− Ax) +
k∑

i=1

λifi(x) +
l∑

j=1

µjgj(x).

9We assume that f1, . . . , fk are not affine functions.
10We assume that αj ̸= 0, j = 1, 2, . . . , l.
11We assume that A ̸= 0m×n.
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The Lagrange dual problem of problem (1.12) takes the following form

max G(y, λ, µ) := inf
x∈X

L(x, y, λ, µ)

s.t. λ ≥ 0, µ ≥ 0, y ∈ Rm. (1.13)

Analogously, we define

• the set of dual feasible points DK := {(y, λ, µ) | λ, µ ≥ 0};

• the dual optimal value d∗K := supy,λ,µ{G(y, λ, µ) | λ, µ ≥ 0}, if D ≠ ∅; and d∗K :=

−∞, if D = ∅;

• the set of dual optimal points D∗
K := {(y, λ, µ) | G(y, λ, µ) = d∗K}.

1.4.2 Conic reformulation of a primal convex problem

In this section we present an equivalent reformulation of problem (1.12) as a convex conic

problem. The idea of the reformulation lies in embedding a convex set into a convex cone,

as it is described in [15, Section 3.2.6], [6, Section 3.3], or [36, Section 6.2].

min t

s.t. Ax = b,

s = 1, (1.14)

(x⊤, t, s)⊤ ∈ K,

where

K :=

{
(x⊤, t, s)⊤ ∈ Rn × R× R | s > 0,

x

s
∈ X, f0

(x
s

)
≤ t

s
, fi

(x
s

)
≤ 0,

gj

(x
s

)
≤ 0, i = 1, 2, . . . , k, j = 1, 2, . . . , l

}
∪ {(0⊤, 0, 0)⊤}. (1.15)

Thus, problem (1.12) can be equivalently reformulated as a convex conic problem (1.14),

which is of the form (1.1). Therefore, the dual problem of (1.14) is

max b⊤y + z

s.t. (y⊤A, 0, z)⊤ + S = (0⊤, 1, 0)⊤, (1.16)

S ∈ K∗, y ∈ Rm, z ∈ R.
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1.4.3 The generalized Slater condition and the conic version of

Slater condition

The generalized Slater condition (see [15, Section 5.2.3]) is a known sufficient condition

for strong duality to hold in standard problems of convex programming. More precisely,

if there exists a point x̃ ∈ X such that

fi(x̃) < 0, i = 1, 2, . . . , k, (1.17)

gj(x̃) ≤ 0, j = 1, 2, . . . , l, (1.18)

Ax̃ = b, (1.19)

then the strong duality in problems (1.12) and (1.13) holds, i.e. p∗K = d∗K . Moreover,

if d∗K > −∞, then D∗
K ̸= ∅. In other words, the strong duality property is guaranteed

if there exists a feasible point x̃ ∈ X, for which non-affine constraints are satisfied with

strict inequalities but affine constraints may not be satisfied with strict inequalities.

The conic version of Slater condition for problem (1.14) states that the strong duality

property holds, i.e. p∗ = d∗, if there exists a point (x̄⊤, t̄, s̄)⊤ such that

Ax̄ = b, (1.20)

s̄ = 1, (1.21)

(x̄⊤, t̄, s̄)⊤ ∈ relint(K). (1.22)

We show that if the generalized Slater condition for problem (1.12) is satisfied, then

the conic version of Slater condition for problem (1.14) is satisfied, and hence, the strong

duality property holds for problems (1.14) and (1.16).

Theorem 1.10. Consider the convex problem (1.12), its equivalent conic reformulation

(1.14), and their dual problems (1.13) and (1.16). If there exists x̄ ∈ X such that x̄

satisfies (1.17)–(1.19), then

a) there exists a point satisfying (1.20)–(1.22),

b) it holds that p∗K = p∗ = d∗ = d∗K.

Before we prove Theorem 1.10, we need to include three auxiliary propositions.
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We define

KF :=

{
(x⊤, t, s)⊤ | s > 0,

x

s
∈ X, f0

(x
s

)
≤ t

s
, fi

(x
s

)
≤ 0, i = 1, 2, . . . , k

}
,

KG := {(x⊤, t, s)⊤ | α⊤
j x+ βjs ≤ 0, j = 1, 2, . . . , l},

KA := {(x⊤, t, s)⊤ | α⊤
j x+ βjs ≤ 0, j = 1, 2, . . . , l, Ax− bs = 0}.

Problem (1.14) may then be equivalently formulated in the following form

min t

s.t. s = 1, (1.23)

(x⊤, t, s)⊤ ∈ KF ∩KA.

The following essential proposition was formulated and proved in [36, Proposition 6.2].

Proposition 1.3. Consider the convex problem (1.12), its equivalent conic reformulation

(1.14), and their dual problems (1.13) and (1.16). If there exists x̄ ∈ X such that x̄

satisfies (1.17), then int(KF) ̸= ∅ and (x̄⊤, f0(x̄) + 1, 1)⊤ ∈ int(KF).

Now, we include a proposition dealing with the interior of cone KG. The proof can be

found in Appendix B.

Proposition 1.4. It holds that

int(KG) = {(x⊤, t, s) | α⊤
j x+ βjs < 0, j = 1, 2, . . . , l}.

Constraint Ax − bs = 0 in the definition of KA may be treated as 2m inequalities in

the from a⊤i x − bis ≤ 0 and −a⊤i x + bis ≤ 0, where ai represents the i-th row of matrix

A, i = 1, 2, . . . ,m. We define αl+i := ai, αl+m+i = −ai, βl+i = −bi, βl+m+i = bi for

i = 1, 2, . . . ,m.

With this constraint modification we have two cases to consider. Either KA is a vector

subspace, i.e. KA = lin(KA), or not, i.e. KA ̸= lin(KA).

Considering the first case, for any point (x̄⊤, t̄, s̄)⊤ ∈ KA it holds that −(x̄⊤, t̄, s̄)⊤ ∈

KA, and hence, α⊤
j x̄ + βj s̄ = 0 for all j = 1, 2, . . . , l + 2m. On the other hand, if for

(x̄⊤, t̄, s̄)⊤ it holds that α⊤
j x̄+ βj s̄ = 0 for all j = 1, 2, . . . , l + 2m and Ax̄− bs̄ = 0, then

(x̄⊤, t̄, s̄)⊤ ∈ KA and thus

KA = {(x⊤, t, s)⊤ | α⊤
j x+ βjs = 0, j = 1, 2, . . . , l + 2m} = relint(KA). (1.24)
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Considering the second case, we will construct a new cone K(l+2m)
G with a nonempty

interior by eliminating some constraints from KA.

We will construct a subsequence {j1, j2, . . . , jr} ⊆ {1, 2, . . . , l + 2m} of constraints

defining K(l+2m)
G and the complementary subsequence

(jr+1, jr+2, . . . , jl+2m) = (jk)k∈{1,2,...,l+2m}\{j1,...,jr},

which will be excluded from KA.

We set j1 := 1 and K(1)
G := {(x⊤, t, s)⊤ | α⊤

1 x+ β1s ≤ 0}. If

int({(x⊤, t, s)⊤ | α⊤
j x+ βjs ≤ 0, j = 1, 2}) ̸= ∅,

we set K(2)
G := {(x⊤, t, s)⊤ | α⊤

j x+βjs ≤ 0, j = 1, 2} and j2 = 2; otherwise, we set K(2)
G :=

K
(1)
G and j2 := mini=2,...,l+2m

{
i | int({(x⊤, t, s)⊤ | α⊤

j x+ βjs ≤ 0, j = 1, i}) ̸= ∅
}
.

We repeat the process with K(2)
G to obtain K

(3)
G until we reach K

(l+2m)
G . Note that this

process ends after l + 2m repetitions, and

K
(l+2m)
G = {(x⊤, t, s)⊤ | α⊤

j x+ βjs ≤ 0, j = j1, j2, . . . , jr},

with int(K(l+2m)
G ) ̸= ∅ and

jk = min
i=k,k+1,...,l+2m

{i | int({(x⊤, t, s)⊤ | α⊤
j x+ βjs ≤ 0, j = j1, j2, . . . , jk−1, i}) ̸= ∅},

k ∈ {1, 2, . . . , l + 2m}, j1 = 1, and

(jr+1, jr+2, . . . , jl+2m) = (jk)k∈{1,2,...,l+2m}\{j1,...,jr}.

Moreover, it holds that int(K(l+2m)
G ∩ {(x⊤, t, s)⊤ | α⊤

j x + βjs ≤ 0}) = ∅ for all

j ∈ {jr+1, jr+2, . . . , jl+2m}. If for some i ∈ {jr+1, . . . , jl+2m} it held that

int(K
(l+2m)
G ∩ {(x⊤, t, s)⊤ | α⊤

i x+ βis ≤ 0}) ̸= ∅,

then also

int({(x⊤, t, s)⊤ | α⊤
j x+ βjs ≤ 0, j ∈ {jk | i > jk, k ∈ {1, 2, . . . , r}} ∪ {i}}) ̸= ∅,

and thus i ∈ {j1, . . . , jr}, which would be a contradiction.

With this construction of K(l+2m)
G we formulate and prove the following proposition.
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Proposition 1.5. a) If KA ̸= lin(KA), it holds that

relint(KA) =
{
(x⊤, t, s)⊤ | α⊤

j x+ βjs < 0, j ∈ J1,

α⊤
j x+ βjs = 0, j ∈ {1, 2, . . . , l + 2m} \ J1

}
, (1.25)

for an appropriate set J1 ⊆ {j1, j2, . . . , jr}.

b) If KA = lin(KA), it holds that relint(KA) = KA, i.e. relation (1.24) holds.

Proof. The second part of the statement is trivial, we only prove the first part.

First assume that

int(K
(l+2m)
G ) ∩ {(x⊤, t, s)⊤ | α⊤

j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}} ≠ ∅.

Then with the use of Proposition B.4 a) part ii) we have

relint(KA) = relint(K
(l+2m)
G ∩ {(x⊤, t, s)⊤ | α⊤

j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}} =

= relint(K
(l+2m)
G ) ∩ relint({(x⊤, t, s)⊤ | α⊤

j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}}) =

= int(K
(l+2m)
G ) ∩ {(x⊤, t, s)⊤ | α⊤

j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}}.

Obviously, in this case J1 = {j1, . . . , jr}.

Now assume that

int(K
(l+2m)
G ) ∩ {(x⊤, t, s)⊤ | α⊤

j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}} = ∅.

Let us denote

V := {(x⊤, t, s)⊤ | α⊤
j x+ βjs = 0, j ∈ {jr+1, jr+2, . . . , jl+2m}}.

We need to eliminate constraints from K
(l+2m)
G to obtain a cone K

(l+2m+r)
G such that

int(K
(l+2m+r
G )) ∩ V ̸= ∅. Take j1. If

int({(x⊤, t, s)⊤ | α⊤
j1
x+ βj1s ≤ 0}) ∩ V ̸= ∅,

then we set K(l+2m+1)
G := {(x⊤, t, s)⊤ | α⊤

j1
x + βj1s ≤ 0}); otherwise, K(l+2m+1)

G := Rn+2.

Take j2, if int(K
(l+2m+1)
G )∩V ̸= ∅, we setK(l+2m+2)

G := K
(l+2m+1)
G ∩{(x⊤, t, s) | α⊤

j2
x+βj2s ≤

0}; otherwise K(l+2m+2)
G := K

(l+2m+1)
G . We repeat this process until we reach K

(l+2m+r)
G

such that int(K(l+2m+r)
G ) ∩ V ̸= ∅.

The set J1 consits of indices ji i ∈ {1, 2, . . . , r} such that constraint α⊤
ji
x + βjis ≤ 0

is included in K
(l+2m+r)
G . Note that the case J1 = ∅ corresponds with K

(l+2m+r)
G = Rn+2
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and KA = lin(KA). On the other hand, the case J1 = {j1, . . . , jr} corresponds with the

case K(l+2m+r)
G = K

(l+2m)
G .

Now we show that KA = K
(l+2m+r)
G ∩ V . It is easy to see that KA ⊇ K

(l+2m+r)
G ∩

V now assume that (x̄⊤, t̄, s̄)⊤ ∈ KA but (x̄⊤, t̄, s̄)⊤ /∈ K
(l+2m+r)
G ∩ V . It means that

there exists an index i ∈ {j1, . . . , jr} \ J1 such that α⊤
i x̄ + βis̄ < 0, which implies that

int({(x⊤, t, s)⊤ | α⊤
i x+ βis ≤ 0}) ∩ V ̸= ∅, thus int(K(l+2m+r)

G ) ∩ int({(x⊤, t, s)⊤ | α⊤
i x+

βis ≤ 0}) ∩ V ̸= ∅ and i ∈ J1 which is a contradiction.

The use of Proposition B.4 a) part ii) to intersection int(K
(l+2m+r)
G ) ∩ V finishes the

proof.

Proposition 1.5 is useful as it provides a characterization of the relative interior of all

l+2m affine constraints in the form of inequalities, which is now easy to manipulate with.

We are now ready to prove Theorem 1.10.

Proof of Theorem 1.10. a) Suppose that x̄ ∈ X satisfies (1.17), (1.18) and (1.19). Ac-

cording to Proposition 1.3, the point

(x̄⊤, f0(x̄) + 1, 1)⊤ ∈ int(KF).

Moreover, (x̄⊤, f0(x̄) + 1, 1)⊤ ∈ KA. Therefore, there are two cases to consider.

1.) (x̄⊤, f0(x̄) + 1, 1)⊤ ∈ relint(KA).

In this case we have that int(KF) ∩ relint(KA) ̸= ∅, therefore,

(x̄⊤, f0(x̄) + 1, 1)⊤ ∈ int(KF) ∩ relint(KA) =

= relint(KF) ∩ relint(KA) = relint(KF ∩KA).

Relations (1.20) and (1.21) are automatically satisfied, and, since KF ∩KA ⊆ K, it holds

relint(KF ∩KA) ⊆ relint(K), and thus (1.22) is satisfied.

2.) (x̄⊤, f0(x̄) + 1, 1)⊤ /∈ relint(KA).

Since relint(KA) ̸= ∅, there exists a point (x̃⊤, t̃, s̃)⊤ ∈ relint(KA). By [10, Proposi-

tion 1.4.1 (a)] we have that

{(x̄⊤, f0(x̄) + 1, 1)⊤ + ω((x̃⊤, t̃, s̃)⊤ − (x̄⊤, f0(x̄) + 1, 1)⊤) | ω ∈ (0, 1]} ⊆ relint(KA).

Since int(KF) ̸= ∅, there exists ε > 0 such that

(x̄, f0(x̄) + 1, 1)⊤ + ε(q⊤1 , q2, q3)
⊤ ∈ KF ,
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for all q = (q⊤1 , q2, q3)
⊤ with q ∈ B((0⊤, 0, 0)⊤, 1). Again, applying Proposition 1.4.1 (a)

in [10], we get that (x̄, f0(x̄) + 1, 1)⊤ + (1− τ)ε(q⊤1 , q2, q3)
⊤ ∈ int(KF) for all τ ∈ (0, 1].

We set

qγ :=
(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤

γ∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2
,

obviously for γ > 1 we have qγ ∈ B((0⊤, 0, 0)⊤, 1). Thus for all γ > 1 it holds that

(x̄, f0(x̄) + 1, 1)⊤ + γω∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2qγ ∈ relint(KA), ∀ω ∈ (0, 1].

We choose γ > 0, ω ∈ (0, 1] and τ ∈ (0, 1] so that it holds

γ∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2ω = ε(1− τ).

Pick an arbitrary but fixed τ̄ ∈ (0, 1). We set

ω̄ =
ε(1− τ̄)

γ̄∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2
,

where

γ̄ > max

{
ε(1− τ̄)

∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2
,− (s̃− 1)ε(1− τ̄)

∥(x̃⊤, t̃, s̃)⊤ − (x̄, f0(x̄) + 1, 1)⊤∥2
, 1

}
,

thus ω̄ ∈ (0, 1). It follows that

(x̄⊤, f0(x̄) + 1, 1)⊤ + ω̄((x̃⊤, t̃, s̃)⊤ − (x̄⊤, f0(x̄) + 1, 1)⊤) ∈ int(KF) ∩ relint(KA).

Moreover, 1 + ω̄(s̃− 1) > 0, we have that(
x̄⊤ + ω̄(x̃− x̄)⊤

1 + ω̄(s̃− 1)
,
f0(x̄) + 1 + ω̄(t̃− f0(x̄)− 1)

1 + ω̄(s̃− 1)
, 1

)⊤

∈ int(KF) ∩ relint(KA).

Now, it is easy to see that relation (1.21) is satisfied. An analogous argument to case

1.) may be used to show that relation (1.22) is satisfied. We use Proposition 1.5 to show

that relation (1.20) is satisfied.

If KA = lin(KA), then from (1.24) it follows that (1.20) is satisfied, i.e.

A
x̄+ ω̄(x̃− x̄)

1 + ω̄(s̃− 1)
= b,

since every affine constraint is satisfied with equality. If KA ̸= lin(KA), then there exists

a nonempty set J1 ⊆ {j1, . . . , jr} such that α⊤
j x+ βjs = 0, ∀(x⊤, t, s)⊤ ∈ relint(KA) and

∀j ∈ {1, 2, . . . , l + 2m} \ J1. Since indices l +m+ 1, l +m+ 2, . . . , l + 2m /∈ J1, it holds

α⊤
l+m+i

x̄+ ω̄(x̃− x̄)

1 + ω̄(s̃− 1)
+ βl+m+i = 0, i = 1, 2, . . . ,m,
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from which it follows that A x̄+ω̄(x̃−x̄)
1+ω̄(s̃−1)

= b, and hence, (1.20) is satisfied.

b) From a) and Theorem 1.7 b) it follows p∗ = d∗ for problems (1.14) and (1.16).

The equality p∗K = p∗ follows from the fact that (1.14) is an equivalent reformulation

of (1.12) preserving optimal values. The relation p∗K = d∗K follows from the generalized

Slater condition for (1.12) and (1.13). We obtain that p∗K = p∗ = d∗ = d∗K .

Remark 1.13. In general it holds that p∗K = p∗ ≥ d∗ ≥ d∗K . Further analysis of this

relation may be found in [36, Section 6.4].

1.4.4 Example

In the following example, we show that a primal-dual pair of convex programs with a

nonzero duality gap can be reformulated as a primal-dual pair of convex conic programs

with a zero duality gap.

Example 1.4. Consider the convex program

min
1

x1 + 1

s.t.
x2
1

x2

≤ 0, (1.26)

with X = {(x1, x2)
⊤ | x1 + 1 > 0, x2 > 0}. Apparently, the set of feasible points is equal

to the set of optimal points

{(0, x2)
⊤ | x2 > 0},

and, therefore, p∗ = 1. The Lagrange function for the problem (1.26) L : (−1,+∞) ×

R++ × R+ → R takes the following form

L(x1, x2, λ) =
1

x1 + 1
+ λ

x2
1

x2

.

Note that if λ = 0, then infx1>−1,x2>0 L(x1, x2, 0) = 0. If λ < 0, then L(n, n, λ) = 1
n+1

+λn,

where n ∈ N, and limn→+∞ L(n, n, λ) = −∞. If λ > 0, note that L(x1, x2, λ) ≥ 0 for all

x1 > −1, x2 > 0. See that L(n, n3, λ) = 1
n+1

+λ 1
n
, where n ∈ N, and limn→+∞ L(n, n3, λ) =

0. Therefore,

g(λ) = inf
x1>−1,x2>0

L(x1, x2, λ) =

0, λ ≥ 0,

−∞, otherwise.

(1.27)
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Therefore, the corresponding Lagrange dual problem takes the form max{0 | λ ≥ 0} and,

therefore, d∗ = 0. Now, we equivalently reformulate Problem (1.26) as a conic problem

as follows.

min t

s.t. s = 1 (1.28)

(x1, x2, t, s)
⊤ ∈ KF ,

where

KF :=

{
(x1, x2, t, s)

⊤ | x2

s
> 0,

x1

s
> −1, s > 0,

1
x1

s
+ 1

≤ t

s
,

x2
1

x2s
≤ 0

}
∪ {0}

=
{
(0, x2, t, s)

⊤ | x2 > 0, s > 0, s ≤ t
}
∪ {0}.

with

relint(KF) =
{
(0, x2, t, s)

⊤ | x2 > 0, s > 0, s < t
}
.

The corresponding conic dual problem takes the following form max{z | (0, 0, 1,−z)⊤ ∈

K∗
F}, where

K∗
F =

{
(u, v, w, z)⊤ | u ∈ R, v ≥ 0, w ≥ 0, w + z ≥ 0

}
.

Since (0, 0, 1,−1)⊤ ∈ D ≠ ∅ and (0, 1, 2, 1)⊤ ∈ P0 ̸= ∅, according to Theorem 1.7 b) it

holds p∗ = d∗ = 1 and, moreover, (0, 0, 1,−1)⊤ ∈ D∗.

Note that the Slater condition for the convex conic programs in (1.28), consisting in

the existence of a feasible point from the relative interior of KF , is satisfied. However,

the Slater condition for convex programs (see e.g. Section 5.2.3 in [15]) in (1.26) is not

satisfied since the feasible set of (1.26) {(0, x2)
⊤ | x2 > 0} has an empty interior.

Remark 1.14. A similar example as Example 1.4 can be found in [36, Example 6.4] or

[15, Problem 5.21].





Application of conic duality

in polynomial optimization

In this chapter we will be dealing with polynomial optimization. In Section 2.1 we in-

troduce the standard polynomial optimization problem and its equivalent reformulations.

Additionally, we demonstrate that polynomial optimization problems can be formulated

equivalently as conic optimization problems over a cone of polynomials nonnegative on a

specified nonempty set. We analyze properties of these cones, including their respective

dual cones, formulate and present the dual cone theorem. Subsequently, in Section 2.2

we apply results on conic duality from Chapter 1 to derive results on duality theory in

polynomial optimization problems. Finally, in Section 2.3, we demonstrate the applica-

tion of the dual cone theorem. It should be noted that Section 2.1 and Section 2.3 were

published in [37].

More details on (convex) cones can be found in Appendix A. Further information

regarding the vector space of multivariate polynomials can be found in Appendix D.

2.1 Polynomial optimization problems

A polynomial optimization problem is typically regarded as a problem of optimizing a

multivariate polynomial on a nonempty set K ⊆ Rn. More precisely, it is a mathematical

programming problem in the following form

min p(x) (2.1)

x ∈ K,

52
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where p ∈ R[x] is a multivariate polynomial in variable x = (x1, x2, . . . , xn)
⊤ ∈ Rn and

K ⊆ Rn is a nonempty set. For more details see e.g. [42], [43], or [44].

By defining a new variable γ, which will serve as a lower bound of p on K, the problem

(2.1) can be equivalently formulated as

max γ (2.2)

p(x)− γ ≥ 0, ∀x ∈ K.

The constraint in problem (2.2) requires that polynomial p(x)− γ be nonnegative on the

given set K.

Formulation (2.2) relates two concepts: minimizing a polynomial p onK with requiring

nonnegativity of a polynomial p(x)− γ on K. Moreover, it gives rise to a few questions,

such as whether one can optimize over the set of polynomials nonnegative on K, what

the structure of that set is, whether one can test if a polynomial is nonnegative on K and

whether such testing can be done efficiently.

Unfortunately, problem (2.1) and problem (2.2) in general are not convex programming

problems without convexity assumptions placed on K and p, which disables one to benefit

from the advantages of convex optimization. In fact, in [38] it was shown that testing

whether a polynomial of degree at least 4 is nonnegative on a basic semialgebraic set K is

NP-hard, even if K = Rn. Moreover, it was shown that unconstrained optimization of a

quartic polynomial, optimization of a cubic polynomial over the sphere and optimization

of a quadratic polynomial over the simplex are all NP-hard problems (see [53], [22]).

As a consequence, formulation (2.2) provides motivation for examining the structure

of a set of nonnegative multivariate polynomials on a nonempty set K. Furthermore,

formulation (2.2) provides a way of formulating problem (2.1) (and problem (2.2)) as a

convex conic program.

2.1.1 Conic formulation of polynomial optimization problems

In this section we include a convex conic formulation of problem (2.1) and problem (2.2)

as it can be found in [44].

Note that polynomial p in problem (2.2) is a polynomial of degree at most d and so is

polynomial p(x)−γ for any γ ∈ R. Denoting Cn,d(K) the set of all n-variate polynomials
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with a degree at most d which are nonnegative on set K,

Cn,d(K) := {p ∈ R[x]d | p(x) ≥ 0, ∀x ∈ K} ,

constraint p(x)− γ ≥ 0, ∀x ∈ K may be formulated as follows

p(x)− γ ∈ Cn,d(K).

The following proposition states that the set Cn,d(K) is a convex set with a conic

structure, thus a convex cone.

Proposition 2.1. Let K ⊆ Rn be a nonempty set, then Cn,d(K) is a convex cone.

Proof. For arbitrary p ∈ Cn,d(K) and c ≥ 0 it holds that cp(x) ≥ 0 for all x ∈ K

and, therefore, cp ∈ Cn,d(K). Moreover, for arbitrary p, q ∈ Cn,d(K), it holds that

p(x) + q(x) ≥ 0 for all x ∈ K and, therefore, p + q ∈ Cn,d(K). We have shown that

Cn,d(K) is a convex cone.

2.1.2 Properties of a cone of polynomials nonnegative

on a nonempty set

In this section we concentrate on the properties of convex cone Cn,d(K). We will show

that this cone is closed and solid. Moreover, if int(K) ̸= ∅, it is a pointed cone, and hence,

a proper cone.

An interesting property of cone Cn,d(K) is the nesting property : one can observe that

polynomials with lower degree than d which are nonnegative on K are also included in

Cn,d(K).

Proposition 2.2. Let K ⊆ Rn be a nonempty set. Then

Cn,d(K) ⊇ Cn,d−1(K) ⊇ Cn,d−2(K) ⊇ · · · ⊇ Cn,0(K).

Remark 2.1. In some cases it may happen that Cn,d(K) = Cn,d−1(K), for example,

C1,3(R) = C1,2(R).

In the following proposition we will show that Cn,d(K) is a closed solid cone. Moreover,

under the additional condition placed on the set K, it is also a pointed cone. Part a) and

c) in Proposition 2.3 can be found in [59, Section 4.2] and [11, Section 1.1] for K = Rn.
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Proposition 2.3. Let d ∈ N. The convex cone Cn,d(K) is

a) closed in R[x]d,

b) pointed, if int(K) ̸= ∅,

c) solid.

Proof. a) Consider an arbitrary sequence {pj}∞j=1 ⊆ Cn,d(K) such that pj → p for j → ∞.

We have that pj(x) ≥ 0 for all x ∈ K and all j ∈ N and thus limj→∞ pj(x) = p(x) ≥ 0 for

all x ∈ K which implies that p ∈ Cn,d(K).

b) Assume by contradiction that int(K) ̸= ∅ but there exists a nonzero polynomial

p ∈ Cn,d(K) such that −p ∈ Cn,d(K). It immediately follows that p(x) = 0 for all x ∈ K.

Choose a point x̄ ∈ int(K). Then there exists r > 0 such that B(x̄, r) ⊂ K, which means

that p(x) = 0, ∀x ∈ B(x̄, r). Set

g(x) := p(x̄− x), ∀x ∈ Rn.

It is obvious that g(x) is a multivariate polynomial with a degree at most d and thus it

can be expressed in the form

g(x) =
∑
α∈Nα

d

gαx
α.

Moreover, g is infinitely many times differentiable on Rn and g(x) = 0, ∀x ∈ B(0, r). Note

that

∂|α|g

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

(0, 0, . . . , 0) = α1! · α2! · · · · · αn! · g(α1,α2,...,αn), α ∈ Nn
d .

Since ∂|α|g
∂x

α1
1 ∂x

α2
2 ...∂xαn

n
(0, 0, . . . , 0) = 0, we obtain gα = 0, ∀α ∈ Nn

d , which implies that g ≡ 0.

Note that p(x) = g(x̄− x) and thus p ≡ 0, which is a contradiction.

c) We will show that Cn,2k(K) is a solid cone for any k ∈ N. Note that if d is divisible

by 2, then set d = 2k to show that Cn,d(K) is a solid cone. If d is not divisible by 2,

recall that by Proposition 2.2 we have Cn,d−1(K) ⊆ Cn,d(K) with d− 1 being divisible by

2. Since ∅ ≠ int(Cn,d−1(K)) ⊆ int(Cn,d(K)), we will eventually have int(Cn,d(K)) ̸= ∅.

We will show that a polynomial q(x) = mk(x)
⊤mk(x) is an interior point of Cn,2k(K)

for any nonempty set K ⊆ Rn. Obviously, for any polynomial p ∈ R[x]2k we have that

p(x) = q(x) + p(x)− q(x), ∀x ∈ Rn.
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By Proposition D.1 we have |p(x)−q(x)| = |(p−q)(x)| ≤ ∥p−q∥∥m2k(x)∥2 for all x ∈ Rn.

We have that

∀x ∈ Rn : p(x) ≥ q(x)− ∥p− q∥∥m2k(x)∥2

We will choose r > ∥p− q∥ such that ∀x ∈ K we will have

p(x) ≥ q(x)− r∥m2k(x)∥2 ≥ 0,

for instance

r =
1

2
inf
x∈K

{
mk(x)

⊤mk(x)√
m2k(x)⊤m2k(x)

}
.

Since mk(x)
⊤mk(x)√

m2k(x)⊤m2k(x)
≥ 1 for all x ∈ Rn (see Proposition D.2), r > 0 is indeed well-defined.

By this construction of r > 0 we have shown that B(q, r) = {p ∈ R[x]2k | ∥p − q∥ <

r} ⊂ Cn,2k(K).

Example 2.1. The assumption of a nonempty interior of K in Proposition 2.3 b) cannot

be disposed of. Consider K = {(x1, x2) ∈ R2 | (x2 − 1)2 ≤ 0} = {(x1, 1) | x1 ∈ R} and

C2,2(K) = {p ∈ R[x1, x2]2 | p(x1, 1) ≥ 0, ∀x1 ∈ R}. Clearly, int(K) = ∅ the polynomial p,

defined as p(x1, x2) = (x2 − 1)x1, is included in C2,2(K) but also −p ∈ C2,2(K). It shows

that C2,2(K) is not pointed.

2.1.3 Dual cone and the dual cone theorem

In this section we introduce the dual cone of Cn,d(K) and the dual cone theorem. Note

that the (algebraic) dual cone of Cn,d(K) by definition consists of linear functionals ℓ :

R[x]d → R such that ℓ(p) ≥ 0 for all p ∈ Cn,d(K) (see e.g. [11] or [44]), and thus ℓ ∈ R[x]∗d,

which is the dual vector space of R[x]d. However, since R[x]d is finite dimensional, it holds

R[x]d ≃ R[x]∗d. Therefore, the dual cone of Cn,d(K) can be represented as follows

Cn,d(K)∗ = {q ∈ R[x]d | ⟨p, q⟩ ≥ 0, p ∈ Cn,d(K)}. (2.3)

Note that the representation of Cn,d(K)∗ in [44] and [11] differs from the representation

that we have introduced.

The properties of Cn,d(K)∗ directly follow from the general theory of dual cones (see

Chapter 2.6.1 in [15] and the bipolar theorem (Theorem A.2)) and Proposition 2.3. They

are included in the following proposition. Note that a similar statement to part c) is

mentioned in [44, Lemma 4.6].
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Proposition 2.4. For the dual cone Cn,d(K)∗ the following statements hold.

a) Cn,d(K)∗ is a closed convex cone in R[x]d,

b) Cn,d(K)∗ is pointed,

c) if int(K) ̸= ∅, then Cn,d(K)∗ is solid,

d) Cn,d(K)∗∗ = Cn,d(K).

The dual cone Cn,d(K)∗, represented by (2.3), can be characterized as a closure of a

conic hull of polynomials of the form
∑

α∈Nn
d
tαxα, where t ∈ K. We state and prove this

characterization of Cn,d(K)∗ in the following theorem. A similar characterization theorem

of Cn,d(Rn)∗ in terms of linear functionals was proved in [11, Lemma 2.1], or [59, Lemma

4.11]. Another characterization Cn,d(K)∗ in terms of vectors of Rs(n,d) having a finite

representing measure with support contained in K was proved in [44, Lemma 4.7] with

additional assumption on K being compact.

Theorem 2.1. Let Cn,d(K) be a cone of nonnegative polynomials on K of degree at most

d (d ∈ N). Then

Cn,d(K)∗ = cl

cone
∑

α∈Nn
d

tαxα | t ∈ K

 .

Proof. Inclusion ⊇: take a q ∈ cone
[∑

α∈Nn
d
tαxα | t ∈ K

]
. It means that there exist a

number m ∈ N, coefficients c1, c2, . . . , cm ≥ 0 and vectors t1, t2, . . . , tm ∈ K such that

q(x) =
m∑
i=1

ci
∑
α∈Nn

d

tαi x
α =

∑
α∈Nn

d

m∑
i=1

cit
α
i x

α.

Now take an arbitrary p ∈ Cn,d(K) to show that

⟨p, q⟩ =
∑
α∈Nn

d

pαqα =
∑
α∈Nn

d

pα

m∑
i=1

cit
α
i =

=
m∑
i=1

ci
∑
α∈Nn

d

pαt
α
i =

m∑
i=1

cip(ti) ≥ 0.

Note that p(ti) ≥ 0 for all i = 1, 2, . . . ,m because ti ∈ K and p is nonnegative on K.

Since p was chosen arbitrarily, we obtain that q ∈ Cn,d(K)∗.

Now suppose that q /∈ cone
[∑

α∈Nn
d
tαxα | t ∈ K

]
, but

q ∈ cl

cone
∑

α∈Nn
d

tαxα | t ∈ K

 .
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There exists a sequence of polynomials {qj}∞j=1 ⊆ cone
[∑

α∈Nn
d
tαxα | t ∈ K

]
such that

limj→∞ qj = q. It is obvious, using the argument above, that for any p ∈ Cn,d(K) it holds

that ⟨p, qj⟩ ≥ 0 for all j ∈ N. With the inner product being continuous, by limit transition

we have ⟨p, q⟩ ≥ 0 and hence q ∈ Cn,d(K).

Inclusion⊆: we will use the separating hyperplane theorem (see e.g. [15, Chapter 2.5]):

suppose that q ∈ Cn,d(K)∗ but

q /∈ cl

cone
∑

α∈Nn
d

tαxα | t ∈ K

 .

Since cl
(
cone

[∑
α∈Nn

d
tαxα | t ∈ K

])
is a closed convex cone, there exists a separating

polynomial v ∈ R[x]d such that

⟨v, q⟩ < 0 and

⟨v, r⟩ ≥ 0 ∀r ∈ cl

cone
∑

α∈Nn
d

tαxα | t ∈ K

 .

For arbitrary t̄ ∈ K set r(x) =
∑

α∈Nn
d
t̄αxα. Note that ⟨v, r⟩ ≥ 0 and thus we have

⟨v, r⟩ =
∑
α∈Nα

d

vαt̄
α = v(t̄) ≥ 0.

Since t̄ was chosen arbitrarily, we have v(t) ≥ 0, ∀t ∈ K and thus v ∈ Cn,d(K). But this

is in contradiction with ⟨v, q⟩ < 0.

2.2 Duality results in polynomial optimization

problems

In this section we synthesize the results from Chapter 1 with findings from Chapter 2. We

will provide a representation of problem (2.2) in the form of a dual convex conic problem

(1.4). We derive the corresponding primal convex conic problem and prove that it is

equivalent to the original problem (2.1).

In this section we will consider the ordered canonical basis of R[x]d, which is concate-

nated in vectormd(x) (see Appendix D). Since R[x]d ≃ Rs(n,d), there exists an isomorphism

I : R[x]d → Rs(n,d)
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defined as follows

I : p(x) = md(x)
⊤(pα)α∈Nn

d
7→ I(p) := (pα)α∈Nn

d
.

Note that since inner product ⟨·, ·⟩ in R[x]d and inner product in Rs(n,d) are compatible,

it holds that

I(Cn,d(K)∗) = {(qα)α∈Nn
d
| (pα)⊤α∈Nn

d
(qα)α∈Nn

d
≥ 0, ∀(pα)α∈Nn

d
∈ I(Cn,d(K))}

= {(pα)α∈Nn
d
| (pα)α∈Nn

d
∈ I(Cn,d(K))}∗ = (I(Cn,d(K)))∗.

2.2.1 Representation of polynomial optimization problems in

the form of convex conic problems

In problem (2.2), which is of form

max γ

p(x)− γ ∈ Cn,d(K),

we define s(x) := p(x)− γ, which leads to a problem in the following form

max γ

s(x) + γ = p(x), (2.4)

s(x) ∈ Cn,d(K).

Via isomorphism I, we transform the given optimization problem (2.4) in R[x]d to an

optimization problem in Rs(n,d) as follows

max γ

(sα)α∈Nn
d
+ γ(1, 0, . . . , 0)⊤ = (pα)α∈Nn

d
, (2.5)

(sα)α∈Nn
d
∈ I(Cn,d(K)),

which is a problem of form (1.4) for A = (1, 0, 0, . . . , 0), b = 1 and c = (pα)α∈Nn
d
.

Note that from Proposition 2.3 a) and the bipolar theorem (Theorem (A.2)) we have

that Cn,d(K) = Cn,d(K)∗∗, which implies I(Cn,d(K)) = I(Cn,d(K))∗∗. The corresponding

problem to problem (2.5) in the form of a primal convex conic problem takes the following
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form

min (pα)
⊤
α∈Nn

d
(qα)α∈Nn

d

(1, 0, 0, . . . , 0)(qα)α∈Nn
d
= 1, (2.6)

(qα)α∈Nn
d
∈ I(Cn,d(K))∗,

or in the polynomial form

min ⟨p, q⟩

⟨1(x), q⟩ = 1, (2.7)

q ∈ Cn,d(K)∗.

where 1(x) := 1, ∀x ∈ Rn. The constraint ⟨1(x), q⟩ = 1 is equivalent to q(0) = 1.

Note that problems (2.1) and (2.2) are equivalent. Problem (2.2) has a conic rep-

resentation as a dual program (2.4). The question to be asked is whether or not the

corresponding primal program (2.7) is equivalent to the original problem (2.1). We show

that, supposing that K is a compact set, these two programs are equivalent.

Proposition 2.5. Suppose that K ⊆ Rn is a compact set, then problems (2.1) and (2.7)

are equivalent, i.e. they attain the same minimum value.

Proof. SinceK is a compact set, there exists a point x∗ ∈ K in which problem (2.1) attains

its minimum. Take q(x) =
∑

α∈Nn
d
(x∗)αxα. Since x∗ ∈ K, we have that q ∈ Cn,d(K)∗.

Moreover, q(0) = 1 and ⟨p, q⟩ =
∑

α∈Nn
d
pα(x

∗)α = p(x∗), which shows that

inf{⟨p, q⟩ | ⟨1(x), q⟩ = 1, q ∈ Cn,d(K)∗} ≤ p(x∗) = min{p(x) | x ∈ K}.

Now take any q ∈ Cn,d(K)∗ with q(0) = 1. First assume that

q ∈ cone

∑
α∈Nn

d

tαxα | t ∈ K

 ,

which means that there exist a number m ∈ N, coefficients c1, c2, . . . , cm ≥ 0 and vectors

t1, t2, . . . , tm ∈ K such that

q(x) =
m∑
i=1

ci
∑
α∈Nn

d

tαi x
α =

∑
α∈Nn

d

m∑
i=1

cit
α
i x

α.

The constraint q(0) = 1 translates to
∑m

i=1 ci = 1. Moreover,

⟨p, q⟩ =
m∑
i=1

cip(ti) ≥
m∑
i=1

cip(x
∗) = p(x∗).
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The case

q /∈ cone

∑
α∈Nn

d

tαxα | t ∈ K


is treated by a sequence-limit argument, similarly as in the proof of Theorem 2.1.

Therefore, we have

min{⟨p, q⟩ | ⟨1(x), q⟩ = 1, q ∈ Cn,d(K)∗} = min{p(x) | x ∈ K}.

Remark 2.2. A similar result can be found in [43] and [33] in terms of the cone of

finite signed (Borel) measures nonnegative on K. However, owing to the representation

(2.3) of Cn,d(K)∗ and the dual cone theorem, we are able to formulate problems (2.4),

(2.7), Proposition 2.5 and the following results in a polynomial setting. Furthermore, our

approach reveals the actual duality (not only equivalence) of problems (2.1) and (2.2),

supposing that K is a compact set.

In the following sections we will assume that K ⊆ Rn in problem (2.1) is a compact

set in order that problems (2.7) and (2.1) are equivalent as it is stated in Proposition 2.5.

Recall that Cn,d(K) is a solid closed convex cone, moreover, if int(K) ̸= ∅, then it is

also a pointed cone. On the other hand, cone Cn,d(K)∗ is a pointed closed convex cone,

moreover, if int(K) ̸= ∅, then it is also a solid cone.

Note that for problems (2.7) and (2.4) it is defined

the set of primal feasible points

P = {q ∈ Cn,d(K)∗ | q(0) = 1},

the set of primal strictly feasible points

P0 = {q ∈ relint(Cn,d(K)∗) | q(0) = 1},

the set of dual feasible points

D = {(γ, s) | s(x) + γ = p(x), s(x) ∈ Cn,d(K)},

the set of dual strictly feasible points

D0 = {(γ, s) | s(x) + γ = p(x), s(x) ∈ relint(Cn,d(K))},

the primal optimal value p∗ = inf{⟨p, q⟩ | q ∈ P}, if P ̸= ∅ and p∗ = +∞, if P = ∅.

Similarly, the dual optimal value d∗ = sup{γ |(γ, s) ∈ D}, if D ≠ ∅ and d∗ = −∞, if

D = ∅.
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The following proposition states that problem (2.7) is always feasible and problem

(2.4) is always strictly feasible.

Proposition 2.6. Consider the primal-dual pair of programs (2.7) and (2.4), where

Cn,d(K) satisfies Assumption 1. It holds that

a) P ≠ ∅.

b) D0 ̸= ∅.

Proof. a) The statement follows from the fact that 1(x) ∈ Cn,d(K)∗ with 1(0) = 1.

b) Note that Cn,d(K) is a solid cone and Cn,d(K)∗ is a pointed cone, see Proposition

2.3 c) and Proposition 2.4 b). Using characterization (22) in Proposition B.2 we have

that

int(Cn,d(K)) = {p ∈ Cn,d(K) | ⟨p, q⟩ > 0, ∀q ∈ Cn,d(K)∗ \ {0}}.

Now choose any ε > 0 and set γ := minx∈K p(x) − ε, which is well-defined since K is a

compact set. Consider any

0 ̸= q ∈ cone

∑
α∈Nn

d

tαxα | t ∈ K

 ,

which means that there exist a number m ∈ N, coefficients c1, c2, . . . , cm ≥ 0 and vectors

t1, t2, . . . , tm ∈ K such that

q(x) =
m∑
i=1

ci
∑
α∈Nn

d

tαi x
α =

∑
α∈Nn

d

m∑
i=1

cit
α
i x

α.

Observe that

⟨p, q⟩ =
m∑
i=1

cip(ti)− γ

m∑
i=1

ci ≥ (min
x∈K

p(x)− γ)
m∑
i=1

ci = ε

m∑
i=1

ci > 0,

since q ̸= 0. The case

Cn,d(K)∗ ∋ q /∈ cone

∑
α∈Nn

d

tαxα | t ∈ K

 , q ̸= 0

is treated by a sequence-limit argument.



2.3. CHARACTERIZATION OF C1,2([−1, 1])∗ AND C1,2([−1, 1]) 63

2.2.2 Zero duality gap

In this section we apply results from Section 1.3.1 to primal-dual pair of polynomial

optimization problems (2.1) and (2.2) with respect to the formulations (2.4) and (2.7) via

isomorphic formulations (2.5) and (2.6).

Since problems (2.4) is a Lagrangian dual of (2.7), the weak duality property p∗ ≥ d∗

holds for these problems. By direct application of Theorem 1.7 we obtain the following

result regarding the strong duality property.

Theorem 2.2. Consider the primal-dual pair of programs (2.7) and (2.4), where Cn,d(K)

satisfies Assumption 1. It holds that p∗ = d∗, P∗ ̸= ∅ and D∗ ̸= ∅.

2.2.3 Necessary and sufficient conditions for nonemptiness and

(un-)boundedness of sets of optimal solutions

In this section we directly apply results from Corollary 1.2, Proposition 2.3 and Proposi-

tion 2.4 to provide necessary and sufficient conditions for nonemptiness and boundedness

of sets of optimal solutions.

Theorem 2.3.

a) Suppose int(K) ̸= ∅. The set P∗ is nonempty and bounded.

b) The set D∗ is nonempty and bounded if and only if P0 ̸= ∅.

Furthermore, we directly apply Theorem 1.9 a), Proposition 2.3 and Proposition 2.4

to provide a necessary and sufficient condition for nonemptiness and unboundedness of

sets of optimal solutions.

Theorem 2.4. Consider the primal-dual pair of programs (2.7) and (2.4), where cone

Cn,d(K) satisfies Assumption 1. Assume that there exists a polynomial v ∈ R[x]d such that

v(0) = 0, ⟨p, v⟩ = 0 and v ∈ relint(Cn,d(K)∗). The set P∗ is nonempty and unbounded.

2.3 Characterization of C1,2([−1, 1])∗ and C1,2([−1, 1])

In this section we will demonstrate the use of the dual cone theorem in finding explicit

characterizations of the cones C1,2([−1, 1])∗ and C1,2([−1, 1]). Note that the general char-

acterization of Cn,d(K) is not known.
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According to Theorem 2.1 we have

C1,2([−1, 1])∗ = cl
(
cone

[
1 + tx+ t2x2 | t ∈ [−1, 1]

])
.

It means that for every polynomial in cone [1 + tx+ t2x2 | t ∈ [−1, 1]] there exist a number

k ∈ N, t1, t2, . . . , tk ∈ [−1, 1] and c1, c2, . . . , ck ≥ 0 such that

q(x) =

(
k∑

i=1

ci

)
︸ ︷︷ ︸

=:q0

+

(
k∑

i=1

citi

)
︸ ︷︷ ︸

=:q1

x+

(
k∑

i=1

cit
2
i

)
︸ ︷︷ ︸

=:q2

x2.

It can be easily verified that

cone
[
1 + tx+ t2x2 | t ∈ [−1, 1]

]
⊆

⊆ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}.

Now, if q ∈ C1,2([−1, 1])∗, but q /∈ cone [1 + tx+ t2x2 | t ∈ [−1, 1]], there exists a sequence

of polynomials {q(j)}∞j=1 such that limj→∞ q(j) = q. Note that for all j ∈ N it holds

that q(j)2 ≥ 0, q(j)0 ≥ q
(j)
2 and q

(j)
0 q

(j)
2 ≥ (q

(j)
1 )2. Calculating the limits, we obtain that

q ∈ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}, which shows that C1,2([−1, 1])∗ ⊆ {q ∈

R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}.

To show the converse inclusion, consider an arbitrary polynomial q(x) = q0 + q1x +

q2x
2 ∈ {q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21}. We need to show that ⟨p, q⟩ =

p0q0 + p1q1 + p2q2 ≥ 0 for all polynomials p(x) = p0 + p1x+ p2x
2 ∈ C1,2([−1, 1]).

Note that we may assume that q0 ̸= 0; if q0 = 0, then we also have q2 = 0 and q1 = 0

and thus q ≡ 0 and ⟨p, q⟩ = 0, ∀p ∈ C1,2([−1, 1]).

Also note that since q2 ≥ 0, we have q0 ≥ 0 and q20 ≥ q21, which implies that q0 ≥ |q1|.

Hence, if q0 > 0, we have −1 ≤ q1
q0

≤ 1.

Now, take an arbitrary polynomial p ∈ C1,2([−1, 1]). There are three cases to consider.

1. p2 ≥ 0. In this case we have

⟨p, q⟩ = q0

(
p0 + p1

q1
q0

+ p2
q2
q0

)
≥

≥ q0

(
p0 + p1

q1
q0

+ p2
q21
q20

)
=

= q0p

(
q1
q0

)
≥ 0.
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2. p2 < 0 and p1 < 0. In this case we define P (x) = (−p1 − p2) + p1x+ p2x
2. It holds

that p(x)−P (x) = p0+p1+p2 = p(1) ≥ 0, ∀x ∈ R, and thus ⟨p−P, q⟩ = q0p(1) ≥ 0,

from which we have ⟨p, q⟩ ≥ ⟨P, q⟩+ q0p(1). Now,

⟨P, q⟩ = q0(−p1 − p2) + q1p1 + q2p2 =

= p1(q1 − q0) + p2(q2 − q0) ≥ 0,

since p1 < 0, q1− q0 ≤ 0 and p2 < 0, q2− q0 ≤ 0. Hence, ⟨p, q⟩ = ⟨P, q⟩+ q0p(1) ≥ 0.

3. p2 < 0 and p1 ≥ 0. In this case we define P (x) = (p1 − p2) + p1x + p2x
2. Again,

p(x)−P (x) = p0−p1+p2 = p(−1) ≥ 0, ∀x ∈ R, and again ⟨p−P, q⟩ = q0p(−1) ≥ 0,

from which we have ⟨p, q⟩ = ⟨P, q⟩+ q0p(−1). Now,

⟨P, q⟩ = q0(p1 − p2) + q1p1 + q2p2 =

= p1(q0 + q1) + p2(q2 − q0) ≥ 0,

since p1 ≥ 0, q0+q1 ≥ 0 and p2 < 0, q2−q0 ≤ 0. Hence, ⟨p, q⟩ = ⟨P, q⟩+q0p(−1) ≥ 0.

Since p was chosen arbitrarily, we have shown that ⟨p, q⟩ ≥ 0 for all p ∈ C1,2([−1, 1]) and

thus q ∈ C1,2([−1, 1])∗.

We have found the explicit characterization of C1,2([−1, 1])∗. In fact,

C1,2([−1, 1])∗ =
{
q ∈ R[x]2 |q2 ≥ 0, q0 ≥ q2, q0q2 ≥ q21

}
. (2.8)

From the geometrical point of view, it can be said that C1,2([−1, 1])∗ is the intersection

of a cone isomorphic to the cone of 2× 2 symmetric positive semidefinite matrices and a

polyhedral cone. More specifically,

C1,2([−1, 1])∗ =

= {q0 + q1x+ q2x
2 ∈ R[x]2 | q2 ≥ 0, q0q2 ≥ q21}∩

∩ {q0 + q1x+ q2x
2 ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q1 ∈ R}. (2.9)

Since C1,2([−1, 1]) is a closed convex cone (see Proposition 2.1 and Proposition 2.3), it

holds C1,2([−1, 1]) = C1,2([−1, 1])∗∗. Thus the explicit characterization of C1,2([−1, 1])

can be found by taking the dual of both sides in (2.9). More specifically,

C1,2([−1, 1]) = cl
(
{q ∈ R[x]2 | q2 ≥ 0, q0q2 ≥ q21}∗+

+{q ∈ R[x]2 | q2 ≥ 0, q0 ≥ q2, q1 ∈ R}∗) , (2.10)
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or, after calculating the dual cones

C1,2([−1, 1]) = cl
(
{p ∈ R[x]2 | p0 ≥ 0, p0p2 ≥ p21/4}+

+{p ∈ R[x]2 | p0 ≥ 0, p0 + p2 ≥ 0, p1 = 0}) . (2.11)

In fact, the closure operator in (2.10) and (2.11) is not needed since the sum of these two

cones is closed. Note that the sum of two closed convex cones is closed if the intersection

of their relative interiors is nonempty, for more details see Appendix C, or e.g. [61]. It

can be easily verified that 1 + x2 belongs to the (relative) interiors of both cones.

We finally obtain the characterization of C1,2([−1, 1]) in the following form

C1,2([−1, 1]) =
{
(p0 + r0) + p1x+ (p2 + r2)x

2 ∈ R[x]2 |

p0, r0 ≥ 0, p0p2 ≥ p21/4, r0 + r2 ≥ 0
}
. (2.12)

Note that in (2.12) one can write r0 + r2x
2 = r0(1 − x2) + (r0 + r2)x

2, with r0 ≥ 0 and

r0 + r2 ≥ 0. Using the convexity of {p ∈ R[x]2 | p0 ≥ 0, p0p2 ≥ p21/4}, one can rewrite

(2.12) as follows

C1,2([−1, 1]) = (2.13)

=
{
p0 + p1x+ p2x

2 + r(1− x2) ∈ R[x]2 | p0 ≥ 0, p0p2 ≥ p21/4, r ≥ 0
}
.

Note that from the characterization (2.13) it is possible to find the characterization of

C1,2([a, b]), where a < b (a, b ∈ R), by using an affine change of variables

x 7→ 2

b− a
x− a+ b

b− a
.

It can be easily verified that if p ∈ C1,2([−1, 1]), then

q(x) := p

(
2

b− a
x− a+ b

b− a

)
≥ 0, ∀x ∈ [a, b], (2.14)

and thus q ∈ C1,2([a, b]). On the other hand, for every q ∈ C1,2([a, b]) we may observe

that

p(x) := q

(
b− a

2
x+

b+ a

2

)
≥ 0, ∀x ∈ [−1, 1],

and thus p ∈ C1,2([−1, 1]). Thus q ∈ C1,2([a, b]) if and only if q can be written in the form

(2.14) for some p ∈ C1,2([−1, 1]).



Now from (2.13) it follows that p ∈ C1,2([−1, 1]) if and only if p can be written as

p(x) = s(x) + r(1− x2), ∀x ∈ R,

where s(x) := p0+ p1x+ p2x
2 and p0 ≥ 0, p0p2 ≥ p21/4, r ≥ 0. Note that s ∈ C1,2(R) and

thus

s

(
2

b− a
x− a+ b

b− a

)
= s0 + s1x+ s2x

2 ≥ 0, ∀x ∈ R,

thus it also holds that s0 ≥ 0 and s0s2 ≥ s21/4. We obtain that q ∈ C1,2([a, b]) if and only

if q can be written in the form

q(x) = p

(
2

b− a
x− a+ b

b− a

)
= s

(
2

b− a
x− a+ b

b− a

)
+

4r

(b− a)2
(b− x)(x− a) =

= s0 + s1x+ s2x
2 +R(b− x)(a− x), ∀x ∈ R,

where s0 ≥ 0, s0s2 ≥ s21/4, R ≥ 0. We conclude that

C1,2([a, b]) = (2.15)

=
{
s0 + s1x+ s2x

2 +R(b− x)(x− a) ∈ R[x]2 | s0 ≥ 0, s0s2 ≥ s21/4, R ≥ 0
}
.

The characterizations (2.13) and (2.15) correspond to the result of Fekete, see e.g. The-

orem 2.4 in [44], or [64].
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Conclusion

The aim of this thesis was to examine duality in convex optimization problems. Our

focus was on exploring Lagrangian duality in convex conic programming, as well as its

application in polynomial optimization.

Chapter 1 was devoted to convex conic programming. In Section 1.1, we introduced the

standard form of a primal convex conic program and its corresponding Lagrangian dual, as

it is formulated in convex optimization textbooks, e.g. in [15]. To ensure comprehensive

coverage of theoretical aspects, we included subsections on the weak duality property (see

[15]) and recession cones related to both primal and dual convex conic programs.

Section 1.2 was devoted to primal and dual theorems of alternatives for linear systems

over nontrivial convex cones, including the primal and dual variant of the generalized

Farkas lemmas (Theorem 1.2 and Theorem 1.4), see e.g. [7] or [31]. Additionally, we

introduced a new result: theorems of alternatives (Theorem 1.3 and Theorem 1.5) pro-

viding equivalent conditions to strict feasibility (primal or dual), which proved crucial

in analyzing the boundedness of optimal solution sets. The new results obtained in this

section extend the results formulated in [7], [8] and [71].

In Section 1.3 we analyzed the strong duality property and its aspects, in particular the

zero duality gap and boundedness (or unboundedness) of the sets of optimal solutions, for

convex conic programs. We included the established results (see e.g [47] or [6]) indicating

that the satisfaction of the conic version of Slater condition for either the primal or

dual convex conic program ensures a zero duality gap (Theorem 1.6 and Theorem 1.7).

Subsection 1.3.2 presented new necessary and sufficient conditions for determining the

nonemptiness and boundedness of optimal solution sets in both primal and dual convex

conic programs (Theorem 1.8). Moreover, we obtained new sufficient conditions for strong

duality. In Subsection 1.3.3 we compared our results with the results in [47] and the

differences are illustrated in Example 1.2. In Subsection 1.3.4 we obtained new necessary

68



and sufficient conditions for the nonemptiness and unboundedness of the sets of optimal

solutions of primal and dual convex conic programs (Theorem 1.9). Similarly, we obtained

new sufficient conditions for strong duality. In Table 1.1 in Subsection 1.3.5 we list eight

sufficient conditions, six of which are new, for the zero duality gap, i.e. strong duality

in convex conic programming problems. The new results might be useful in analyzing

other subclasses of convex conic programs, in particular the primal-dual relations between

optimal solutions, as well as in designing new algorithms.

In Section 1.4 we concentrated on the strong duality property in standard convex

programming problems. In Subsection 1.4.2 we included the usual way of reformulating

a standard convex programming problem as a convex conic programming problem by

embedding the primal feasible set into a convex cone. This reformulation provided an op-

portunity to compare two versions of the Slater condition: the generalized version of Slater

condition for a standard convex programming problem and the conic version of Slater con-

dition for the corresponding conic reformulation. We proved (Theorem 1.10) that if the

generalized version of Slater condition is satisfied for a standard convex programming

problem, then the conic version of Slater condition is satisfied for the corresponding conic

reformulation, which extends the results in [36]. We included Example 1.4 in which we

demonstrated that Theorem 1.10 cannot be reversed, and hence, even if the generalized

version of Slater condition for a standard convex programming problem is not satisfied

and strong duality does not hold, the conic version of Slater condition for the correspond-

ing conic reformulation is satisfied and strong duality in the corresponding primal-dual

conic reformulations does hold.

Chapter 2 was devoted to the application of conic duality in polynomial optimization

problems. In Section 2.1 we introduced the standard form of a polynomial optimization

problem and its equivalent lower-bound reformulation, as it is formulated in various poly-

nomial optimization textbooks, e.g. in [44]. In Subsection 2.1.1 we introduced the set of

multivariate polynomials on a given nonempty set K and proved that this set is indeed

a cone. In Subsection 2.1.2 we examined other properties of the cone of polynomials

nonnegative on K which are included in Proposition 2.3, extending the results formulated

in [11]. In Subsection 2.1.3 we introduced one possible representation of the dual cone

to the cone of polynomials nonnegative on K, analyzed its properties, formulated and

proved another equivalent representation included in the dual cone theorem (Theorem
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2.1). In Section 2.2 we provided other representations of a standard polynomial optimiza-

tion problem (different from those in [44]) and showed, supposing that K is compact, that

the standard polynomial optimization problem and its lower-bound reformulation are in

fact in a primal-dual relationship. We derived new results analogous to those in Section

1.3, particularly regarding the zero duality gap. (Theorem 2.2), necessary and sufficient

conditions for nonemptiness and boundedness of sets of optimal solutions (Theorem 2.3)

and a necessary and sufficient condition for nonemptiness and unboundedness of sets of

optimal solutions (Theorem 2.4). In Section 2.3 we demonstrated the application of the

dual cone theorem to find the explicit characterizations of C1,2([−1, 1])∗ and C1,2([−1, 1]).

While these results had previously been discovered through algebraic manipulations with

polynomials (see [44] and [64]), our approach utilized the dual cone theorem and conic

duality to derive them.

In conclusion, the new results obtained in this thesis provide fertile ground for further

research. The findings from Chapter 1 offer insights for analyzing other subclasses of

convex conic programs and potentially designing new algorithms. Additionally, the duality

results from Chapter 2 could be extended to a broader class of polynomial optimization

problems. Lastly, the application of the dual cone theorem may prove useful in finding

characterizations of other cones of multivariate polynomials nonnegative on a given set.
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Appendix

A Properties of cones and dual cones

In this section we include the definitions of basic notions regarding the geometry of cones,

together with various properties of cones. More details can be found in e.g. [6], [10] or

[15]. It should be noted that a part of this section was published in [72].

Definition A.1 ([15], Section 2.1.5, Section 2.4). Let K be a subset of Rn.

a) A subset K is called a cone if ∀x ∈ K and ∀α ≥ 0 it holds that αx ∈ K.

b) A cone K is called a convex cone if K is a convex set.

c) A cone K is called pointed if it does not contain a straight line, i.e. (x ∈ K)∧(−x ∈

K) ⇒ x = 0.

d) A cone K is called solid if its interior is nonempty.

e) A cone K is called a proper cone if it is a convex, closed, pointed, and solid cone.

Remark A.1. Part a) in Definition A.1 translates that a cone is closed under nonnegative

scalar multiplication. Part b) in Definition A.1 can be equivalently reformulated as follows:

a convex cone is a cone closed under vector addition, i.e. ∀x, y ∈ K it holds that x+y ∈ K.

We denote lin(K) := K+(−K) the smallest linear subspace containing the cone K12,

and sub(K) := K ∩ (−K), the largest linear subspace contained in K. The following

result immediately follows from these definitions.

Proposition A.1 ([36], Proposition 1.4). Let K ⊆ Rn be a cone.

a) If K is pointed, then sub(K) = {0}.

b) If K is solid, then lin(K) = Rn.

12or, equivalently, a set of all finite linear combinations of vectors contained in K, see [36]
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Moreover, a convex cone is pointed if and only if sub(K) = {0}; and it is solid if and

only if lin(K) = Rn.

Definition A.2. A cone K is called trivial if it is a linear subspace, i.e. K = sub(K) =

lin(K), otherwise it is called nontrivial.

The following notion, the notion of a recession cone of a nonempty set, plays an

important role in determining whether a given nonempty set is bounded or not.

Definition A.3 ([10], Section 1.5). Let C ⊆ Rn be a nonempty set. The recession cone

RC of the set C is defined as

RC = {d ∈ Rn | x+ γd ∈ C, ∀x ∈ C, ∀γ ≥ 0}.

Vectors d included in RC are called directions of recession of the set C.

Remark A.2. The recession cone consists of directions of recessions. Points along any

direction of recession d ∈ RC (in one direction) starting from any point x ∈ C remain in

the set C, i.e. for every vector x ∈ C it holds that the ray {x+ γd | γ ≥ 0} lies in C.

We now include the proposition dealing with the properties of the recession cone. A

similar result can be found in e.g. [10], Proposition 1.5.1.

Proposition A.2. Let C ⊆ Rn be a nonempty set and RC be the recession cone of C.

a) If C is a (closed) convex set, then RC is a (closed) convex cone.

b) If C is bounded, then RC = {0}.

c) If C is a closed set and RC = {0}, then C is bounded.

We now include the definition of a dual cone and its fundamental properties (see e.g.

in [15, 6, 66]). Dual cone is an essential notion in conic programming.

Definition A.4 ([15], Section 2.6). Let K ⊆ Rn be a cone. The dual cone of a cone K

is the set

K∗ = {y ∈ Rn | x⊤y ≥ 0, ∀x ∈ K}.

Remark A.3. Some authors work with the polar cone concept, typically denoted as K◦.

The relation between the dual and the polar cone is simply K∗ = −K◦.

Dual cones have various important properties, some of which are listed in the following

proposition.
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Proposition A.3 ([15], Section 2.6). a) Let K ⊆ Rn be a cone. K∗ is a closed convex

cone.

b) Let K ⊆ Rn be a cone and a vector subspace in Rn (K = lin(K) = sub(K)), then

K∗ = K⊥.

c) Let K1, K2 ⊆ Rn be cones and K1 ⊆ K2, then K∗
2 ⊆ K∗

1 .

d) Let K ⊆ Rn be a cone, then K∗ = (cl(K))∗.

e) Let K ⊆ Rn be a solid cone, then K∗ is a pointed cone.

f) Let Ki ∈ Rn, i = 1, 2, . . . , s be cones, then (K1×K2×· · ·×Ks)
∗ = K∗

1×K∗
2×· · ·×K∗

s .

g) Let Ki ⊆ Rn, i = 1, 2, . . . , s be cones, then (K1+K2+· · ·+Ks)
∗ = K∗

1∩K∗
2∩· · ·∩K∗

s .

An important tool in conic duality theory is the bipolar theorem and its consequences

(see e.g. [66, Theorem 14.1]; [35, Proposition 4.2.6]). The bipolar theorem is usually

proved using the conic version of a separating hyperplane theorem (for general concept

see [15, Section 2.5], [10, Section 2.4] or [66, Section 11]).

Theorem A.1. Let K ⊆ Rn be a convex cone and x̄ /∈ K. Then there exists a separating

hyperplane passing through the origin which separates x̄ and K, i.e. ∃v ̸= 0 such that

v⊤x̄ < 0, v⊤z ≥ 0, ∀z ∈ K.

The bipolar theorem and its consequences are listed in a corollary below.

Theorem A.2. (Bipolar theorem)

If K is a convex cone, then K∗∗ = cl(K).

Corollary A.1. Assume that K,K1, K2 ⊆ Rn are convex cones.

a) If K is closed, then K = K∗∗.

b) If cl(K) is pointed, then K∗ is solid.

c) cl(K) is a proper cone if and only if K∗ is a proper cone.

d) If cl(K1) ⊂ cl(K2), then K∗
2 ⊂ K∗

1 .

e) If V ⊆ Rn is a linear subspace such that K ⊂ V , then V ⊥ ⊂ K∗.

f) cl(K1 +K2) = (K∗
1 ∩K∗

2)
∗.
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Using the characterization of lin(K) and sub(K) and the bipolar theorem, it can be

easily shown that the linear subspaces are linked in the following way (see [47, Corollary

1]).

Proposition A.4.

a) sub(K∗) = {y ∈ K∗, | x⊤y = 0, ∀x ∈ K} = lin(K)⊥; (16)

b) sub(cl(K)) = {z ∈ cl(K), | z⊤y = 0, ∀y ∈ K∗} = lin(K∗)⊥. (17)

Proof. a) Since lin(K) = K + (−K), we have that lin(K)⊥ = lin(K)∗ = K∗ ∩ (−K)∗ =

sub(K∗). Part b) follows from part a) applied to K∗ and the bipolar theorem.

Note that when (17) is applied toK∗ and combined with (16) and the bipolar theorem,

it follows that lin(K) = lin(cl(K)).

In the following proposition, we list a few simple properties of lin(·) and sub(·) of a

convex cone intersected with a linear subspace V ⊆ Rn.

Proposition A.5.

a) sub(V ∩K) = V ∩ sub(K), (18)

b) V ∩ [K \ sub(K)] = (V ∩K) \ sub(V ∩K), (19)

c) lin(V +K) = V + lin(K), (20)

d) lin(V ∩K) ⊆ V ∩ lin(K). (21)

Proof. a) sub(V ∩K) = (V ∩K)∩ (−(V ∩K)) = (V ∩K)∩ ((−V )∩ (−K)) = (V ∩K)∩

(V ∩ (−K)), since V = −V . Finally, due to the properties of intersection we have that

(V ∩K) ∩ (V ∩ (−K)) = V ∩ V ∩K ∩ (−K) = V ∩ sub(K).

b) (V ∩ K) \ sub(V ∩ K) = (V ∩ K) ∩ (sub(V ∩ K))c = (V ∩ K) ∩ (V ∩ sub(K))c =

(V ∩K)∩ (V c∪ sub(K)c) = (V ∩K ∩V c)∪ (V ∩K ∩ sub(K)c) = ∅∪ (V ∩ [K \ sub(K)]) =

V ∩ [K \ sub(K)].

c) In a) take sub((V +K)∗) = sub(V ⊥ ∩K∗) = V ⊥ ∩ sub(K∗), thus by taking orthogonal

complement we get that lin(V +K) = V + lin(K).

d) Take x ∈ lin(V ∩ K) = (V ∩ K) + (−(V ∩ K)). Note that −(V ∩ K) = {−z | z ∈

V, z ∈ K} = {z | − z ∈ V, −z ∈ K} = {z | z ∈ V } ∩ {z | − z ∈ K} = V ∩ (−K). It

follows that x = x1 + x2, where x1 ∈ V ∩K and x2 ∈ V ∩ (−K). Now, we have x ∈ V

and x ∈ K + (−K) = lin(K).
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Finally, we include a lemma that allows for the decomposition of an intersection of

a convex cone with an affine subspace. Note that a similar result can be found in [10,

Proposition 1.5.4].

Lemma A.1. Let K be a cone satisfying Assumption 1, let V be a linear subspace and

let c be an arbitrary but fixed vector. Then

K∗ ∩ (c+ V ⊥) = [K∗ ∩ (c+ V ⊥)] ∩ lin(V +K) + V ⊥ ∩ sub(K∗).

Proof. First suppose that K∗ ∩ (c+ V ⊥) = ∅, then [K∗ ∩ (c+ V ⊥)]∩ lin(V +K) + V ⊥ ∩

sub(K∗) = ∅+ V ⊥ ∩ sub(K∗) = ∅.

Now suppose that K∗ ∩ (c+ V ⊥) ̸= ∅. Then there exists a vector s ∈ K∗ ∩ (c+ V ⊥). The

vector s can be decomposed into two components, i. e. there exist vectors s1 ∈ lin(V +K)

and s2 ∈ V ⊥∩ sub(K∗) such that s = s1+ s2. Obviously, s− s2 = s1 ∈ K∗∩ (c+V ⊥) and

thus s1 ∈ [K∗ ∩ (c+ V ⊥)]∩ lin(V +K), which proves that s ∈ [K∗ ∩ (c+ V ⊥)]∩ lin(V +

K) + V ⊥ ∩ sub(K∗).

Moreover, we have shown that K∗ ∩ (c+V ⊥) ̸= ∅ iff [K∗ ∩ (c+V ⊥)]∩ lin(V +K)+V ⊥ ∩

sub(K∗) ̸= ∅ and, therefore, in the following text we may assume that [K∗ ∩ (c+ V ⊥)] ∩

lin(V +K) + V ⊥ ∩ sub(K∗) ̸= ∅.

Conversely, if s ∈ [K∗ ∩ (c + V ⊥)] ∩ lin(V + K) + V ⊥ ∩ sub(K∗) there exist vectors

s1 ∈ [K∗ ∩ (c + V ⊥)] ∩ lin(V +K) and s2 ∈ V ⊥ ∩ sub(K∗) such that s = s1 + s2. Obvi-

ously, s ∈ K∗. Moreover, since s1 ∈ (c+V ⊥) and s2 ∈ V ⊥ we have that s ∈ (c+V ⊥).
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B Relative interior of a convex cone

In this section we include the standard definitions of a relative interior of a convex cone,

provide various characterizations of this notion and list a few of its well-known proper-

ties. The relative interior of a convex cone and its characterizations play an important

part in studying the strong duality property in convex conic programming and its vari-

ous aspects, such as theorems of alternatives, Slater-like conditions for strong duality or

(un)boundedness of the set of optimal solutions. For more information on relative interior

see [10], [48] or [66]. It should be noted that a part of this section was published in [72].

For a general convex cone K, the relative interior relint(K) is defined as the interior

of K with respect to the subspace topology on lin(K). A broader definition can be found

in [48, Definition 2.72].

Definition B.1. Let K ⊆ Rn be a convex cone. The relative interior of K with respect

to lin(K) is defined as the set

relint(K) = {x ∈ K | ∃r > 0 : B(x, r) ∩ lin(K) ⊂ K}

The convexity property allows for an equivalent definition of the relative interior of

K.

Definition B.2. Let K ⊆ Rn be a convex cone. The relative interior of K with respect

to lin(K) is defined as the set

relint(K) = {x ∈ K | ∀v ∈ lin(K) ∃λ > 0 : x+ λv ∈ K}.

This concept of the relative interior of a convex cone coincides with the notion of

the (relative) algebraic interior (or core) of a convex cone in [48, Section 2.2.1] restricted

to X = lin(K) rather than X = Rn. It can be shown that for convex sets in finite

dimensional spaces the relative algebraic interior is equal to the relative interior, and,

thus Definition B.1 is equivalent to Definition B.2. For proof see [48, Theorem 2.18] or

[36, Theorem A.0.8, Theorem A.0.9]

The following proposition follows directly from Definition B.2.

Proposition B.1 ([36], Proposition 2.2). Let K ⊆ Rn be a convex cone and K∗ be its

dual cone. Then it holds
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a) relint(K∗) ⊆ K∗ \ sub(K∗),

b) relint(K) ⊆ K \ sub(cl(K)).

An important characterization of the relative interior of K was introduced in [47,

Theorem 2].

Proposition B.2. For a convex cone K ⊆ Rn it holds that

relint(K) = {x ∈ K | x⊤y > 0, ∀y ∈ K∗ \ sub(K∗)}. (22)

From characterization (22) and the bipolar theorem, we obtain a characterization of

the relative interior of the dual cone K∗:

relint(K∗) = {y ∈ K∗ | x⊤y > 0, ∀x ∈ cl(K) \ sub(cl(K))}. (23)

The following result follows from the definition of the dual cone, characterization (22),

and from the fact that 0 ∈ K.

Proposition B.3. For a convex cone K ⊆ Rn it holds that

relint(K) = K + relint(K) = cl(K) + relint(cl(K)). (24)

Proof. Since 0 ∈ K, we have relint(K) ⊆ K+relint(K). Now, take an x ∈ K+relint(K),

thus, x = x1 + x2, where x1 ∈ K and x2 ∈ relint(K). We observe that y⊤x = y⊤x1 +

y⊤x2 > 0 for all y ∈ K∗ \ sub(K∗), showing relint(K) ⊇ K + relint(K). Moreover, it

holds that relint(K) = relint(cl(K)) (see Proposition 1.4.3 in [10]), which completes the

proof.

Now, we recall a few known properties (see [45], [10], and [66]).

Proposition B.4 ([10], Section 1.4). a) Assume that K1, K2 ⊆ Rn are convex cones.

It holds that

i) relint(K1 +K2) = relint(K1) + relint(K2).

ii) if relint(K1)∩relint(K2) ̸= ∅, then relint(K1∩K2) = relint(K1)∩relint(K2).

b) Assume that K1 ⊆ Rm and K2 ⊆ Rn, then relint(K1 × K2) = relint(K1) ×

relint(K2).
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c) Assume that K ⊆ Rn is a convex cone and A ∈ Mm,n(R), then A(relint(K)) =

relint(A(K)).13

Finally, we include the proof of Proposition 1.4 for completeness of theoretical results.

Proof of Proposition 1.4. Let (x̄⊤, t̄, s̄)⊤ ∈ int(KG), then there exists ε > 0 such that

B((x̄⊤, t̄, s̄)⊤, ε) ⊂ KG.

Thus, for all q ∈ B((0⊤, 0, 0)⊤, 1) we have that

(x̄⊤, t̄, s̄)⊤ + ε(q⊤1 , q2, q3)
⊤ ∈ B((x̄⊤, t̄, s̄)⊤, ε)

and it holds that

α⊤
j x̄+ βj s̄+ ε(α⊤

j q1 + βjq3) ≤ 0, j = 1, 2, . . . , l.

Choosing q = 1
∥(α⊤

j ,0,βj)⊤∥(α
⊤
j , 0, βj)

⊤ for each j = 1, 2, . . . , l sequentially, we obtain that

α⊤
j x̄+ βj s̄ ≤ −ε∥(α⊤

j , 0, βj)
⊤∥ < 0, j = 1, 2, . . . , l.

Note that ∥(α⊤
j , 0, βj)

⊤∥ ≠ 0 since αj ̸= 0 for any j = 1, 2, . . . , l.

Now, suppose that (x̄⊤, t̄, s̄)⊤ satisfies α⊤
j x̄ + βj s̄ < 0 for all j = 1, 2, . . . , l. We need

to show that there exists ε > 0 such that B((x̄⊤, t̄, s̄)⊤, ε) ⊂ KG. We set

ε := min
j=1,2,...,l

{
−

α⊤
j x̄+ βj s̄

2∥(α⊤
j , 0, βj)⊤∥

}
> 0.

Take any arbitrary but fixed vector q = (q⊤1 , q2, q3)
⊤ ∈ B((0⊤, 0, 0)⊤, 1). We examine the

vector (x̄⊤, t̄, s̄)⊤ + γq ∈ B((x̄⊤, t̄, s̄)⊤, ε), where 0 < γ < ε is an arbitrary number, we

have that

α⊤
j x̄+ βj s̄+ γ(α⊤

j q1 + βjq3) ≤ α⊤
j x̄+ βj s̄+ γ∥(α⊤

j , 0, βj)
⊤∥ ≤

α⊤
j x̄+ βj s̄

2
< 0,

for all j = 1, 2, . . . , l. Since γ and q were chosen arbitrarily, the proof is complete.

13For a set S ⊆ Rn and an m×n matrix A, we denote A(S) the image of S in the linear transformation

defined by matrix A, i.e. A(S) = {As | s ∈ S}.
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C Closedness of the linear image of a convex cone

Linear programs, i.e. conic linear programs for which the cone K is polyhedral, are

characterized by “ideal”duality theory. This is closely related to the famous Farkas theo-

rem of alternatives [26] and the fact that convex polyhedral cones are finitely generated,

and, hence, their linear images form closed cones. This guarantees that the alternatives

appearing in Farkas lemma are strong, i.e. one and only one of the alternatives holds.

However, in the generalized versions of the Farkas lemma, the alternatives are weak (i.e.

at most one of the two holds), and the closedness of the linear image of the related convex

cone becomes an additional assumption.

In this section we summarize the sufficient conditions for the closedness of the linear

image of a convex cone. We start with the following lemma, which was formulated in [61]

as Theorem 2.2, with the assumption of closedness of K, which, however, is not needed

for the statement to hold. Note that in our formulation the assumption of closedness of

K is omitted, therefore, we provide an alternative proof.

It should be noted that a part of this section was published in [72].

Lemma C.1. Let L ⊆ Rn be a linear subspace and let K ⊆ Rn be a cone satisfying

Assumption 1. Then the following statements are equivalent:

(i) L+K = L+ lin(K);

(ii) L ∩ relint(K) ̸= ∅;

(iii) L⊥ ∩ [K∗ \ sub(K∗)] = ∅.

Proof. First we will show (i) ⇒ (ii). From the assumption (i) and the definition of

lin(K) we have L+K = L+ lin(K) = (L+K) + (−K). Since 0 ∈ L+K it follows that

(−K) ⊆ L + K. Take k̄ ∈ −relint(K) ⊆ L + K. Then k̄ = l + k for some l ∈ L and

k ∈ K. However then −l = (−k̄)+k and (−l) ∈ L. From (24) it follows (−l) ∈ relint(K).

Therefore (−l) ∈ L ∩ relint(K).

Next, we will show (ii) ⇒ (iii). Assume by contradiction that there exists z ∈

L⊥ ∩ [K∗ \ sub(K∗)] and let x ∈ L ∩ relint(K). From the characterization (22) we get

z⊤x > 0, however x ∈ L, z ∈ L⊥ implies z⊤x = 0.

Finally, we will prove (iii) ⇒ (i). It can be easily seen that (iii) is equivalent to

L⊥ ∩K∗ = L⊥ ∩ sub(K∗). Then, by applying the property (c6) (Section 2.1) we obtain
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that cl(L+ lin(K)) = cl(L+K). Then (i) holds since L+ lin(K) is a linear subspace.

Remark C.1. Note that if K is solid, then the statements (i), (ii), (iii) can be simplified

to L+K = Rn, L ∩ int(K) ̸= ∅, L⊥ ∩K∗ = {0}.

The paper [61] briefly discusses the appearance of the equivalent conditions in Lemma

C.1 in literature, expressed in terms of N (A), or S(A⊤), i.e. L corresponding to the null

space or the range of the m×n matrix A. For the reader’s convenience, we formulate the

alternative expressions of the equivalent conditions (i)− (iii) of Lemma C.1 in Table 1.

Table 1: Equivalent conditions of Lemma C.1 formulated for specific linear subspaces and cones

appearing in the primal and dual conic linear programs (1.1) and (1.4). Conditions (i-c)-(iii-c)

correspond to the special case of cl(K) being pointed, conditions (i-d)-(iii-d) correspond to the

special case of K being solid.

(i-a) S(A⊤) +K∗ = S(A⊤) + lin(K∗) (i-b) N (A) +K = N (A) + lin(K)

(ii-a) S(A⊤) ∩ relint(K∗) ̸= ∅ (ii-b) N (A) ∩ relint(K) ̸= ∅

(iii-a) N (A) ∩ [cl(K) \ sub(cl(K))] = ∅ (iii-b) S(A⊤) ∩ [K∗ \ sub(K∗)] = ∅

(i-c) S(A⊤) +K∗ = Rn (i-d) N (A) +K = Rn

(ii-c) S(A⊤) ∩ int(K∗) ̸= ∅ (ii-d) N (A) ∩ int(K) ̸= ∅

(iii-c) N (A) ∩ cl(K) = {0} (iii-d) S(A⊤) ∩K∗ = {0}

Remark C.2. It can be easily seen that (i-a)–(iii-a) and (i-b)–(iii-b) (similarly (i-c)–(iii-d)

and (i-d)–(iii-d) are weak alternatives: at most one of them holds. Clearly, if (i-a)–(iii-a)

(or (i-c)–(iii-c)) holds, then (i-b)–(iii-b)) (or (i-d)–(iii-d)) does not hold. However, they

are not strong alternatives, as demonstrated in the following example: let A = (1 0 1)

and

K = K∗ = cl(K) := {(x1, x2, x3)
⊤ |
√

x2
1 + x3

2 ≤ x3}.

N (A) is generated by (−1, 0, 1)⊤, (0, 1, 0)⊤ and hence neither (iii-c), nor (iii-d) holds.

Remark C.3. Conditions (i-a), (iii-a), (i-b) and (iii-b) can be formulated in terms of

recession cones of P and D̃ (see (1.5) and (1.6)), provided that these sets are nonempty,

as follows: condition (i-a) is equivalent to R∗
P = cl(S(A⊤) +K∗) being a linear subspace

and condition (iii-a), under a condition of closedness of K, is equivalent to RP being a
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linear subspace. Condition (i-b), with requirement that K be closed, is equivalent to

R∗
D̃ = cl(N (A) + K) being a linear subspace and condition (iii-b) is equivalent to RD̃

being a linear subspace.

Table 1 lists conditions under which a linear image of a convex cone is closed: it was

shown in [66, Theorem 9.1], that (iii-a) implies cl(A(K)) = A(cl(K)). On the other hand,

since A(N (A)) = {0}, it can be easily seen that (i-b) implies

A(K) = A(N (A) +K) = A(N (A) + lin(K)) = A(lin(K)),

and hence in this case A(K) is also closed since it is a linear subspace.

We now include a known result often referred to as Theorem of Abrams.

Theorem C.1 ([12], Proposition 3.1). Let S ⊆ Rn be a nonempty set. Assume a linear

map given by matrix A. Then

A(S) is closed ⇔ N (A) + S is closed,

We summarize the results in the following theorem.

Theorem C.2. Assume that K satisfies Assumption 1.

a) If any of the conditions (i-a), (ii-a), (iii-a) holds, then A(cl(K)) is closed and

S(A⊤) +K∗ is a linear subspace.

b) If any of the conditions (i-b), (ii-b), (iii-b) holds, then A(cl(K)) = A(K) is a linear

subspace and S(A⊤) +K∗ is closed.

Remark C.4. Consider the second order cone K and A from Remark C.2. It can be

easily seen that in this case

A(K) = {u+ w | (u, v, w)⊤ ∈ K} = R+,

and hence it is closed. This shows that the conditions in Table 1 are not necessary.

For more results and references, we refer the reader to [61], where the sufficient con-

ditions for the closedness of a linear image of a convex cone and the Minkowski sum were

studied in a more general setting, and the conditions were shown to be also necessary for

a special class of cones.
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D Vector space of multivariate polynomials

In this section we include standard definitions, notations and basic results concerning

multivariate polynomials. It should be noted that a part of this section was published in

[37].

We denote R[x]d the real vector space of n-variate polynomials (x ∈ Rn) with degree

at most d and R[x] the real vector space of n-variate polynomials. The standard (or

canonical) basis of R[x]d consists of all monomials of degree at most d, namely

1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n.

For instance, for n = 2 and d = 3 the canonical basis consists of monomials

1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2.

In fact, there are s(n, d) :=
∑d

i=0

(
n+i−1

i

)
=
(
n+d
d

)
monomials of degree at most d,

where d ∈ N0. Thus, dim(R[x]d) = s(n, d) and clearly R[x]d ≃ Rs(n,d). Apparently,

any polynomial p ∈ R[x]d can be represented as a linear combination of canonical basis

vectors.

Introducing the standard multi-index notation, for

Nn ∋ α := {(α1, α2, . . . , αn) | αi ∈ N0, i = 1, 2, . . . , n},

we set |α| =
∑n

i=1 αi and Nn
d := {α ∈ Nn | |α| ≤ d}. We set xα := xα1

1 xα2
2 . . . xαn

n . Now,

every polynomial p ∈ R[x]d can be expressed in the form

p(x) =
∑
α∈Nn

d

pαx
α, x ∈ Rn

where pα ∈ R are coefficients.

The inner product ⟨·, ·⟩ : R[x]d × R[x]d → R is defined as follows

⟨p, q⟩ =
∑
α∈Nn

d

pαqα, p, q ∈ R[x]d. (25)

The norm induced by inner product (25) takes the following form

∥p∥ =

∑
α∈Nn

d

p2α

 1
2

(26)
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The norm (26) induces a topology on R[x]d. A set O ⊆ R[x]d is open if

∀p ∈ O ∃r > 0 : B(p, r) := {q ∈ R[x]d | ∥p− q∥ < r} ⊂ O.

Note that all norms on R[x]d are equivalent and, therefore, they define the same open

sets of R[x]d.

Note that a sequence {pj}∞j=1 ⊆ R[x]d converges to p ∈ R[x]d, denoted

lim
j→∞

pj = p,

if

∀ε > 0 ∃n0 ∈ N ∀j > n0 : ∥pj − p∥ < ε.

Vector space R[x]d equipped with the norm ∥·∥ is a normed space and, therefore, it

is first-countable. It means that for any subset S ⊆ R[x]d it holds that x ∈ cl(S) if and

only if there exists a sequence {xj}∞j=1 ⊆ S such that limj→∞ xj = x.

We denote

md(x) =
(
1, x1, . . . , xn, x

2
1, x1x2, . . . , xn−1xn, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n

)⊤
for every x ∈ Rn. Note that md : Rn → Rs(n,d).

Finally, we formulate two auxiliary propositions – Proposition D.1 and Preposition

D.2 – which will be useful when dealing with multivariate polynomials. Their proofs can

be found in the Appendix.

Proposition D.1. Let p ∈ R[x]d. Then

∀x ∈ Rn : |p(x)| ≤ ∥p∥∥md(x)∥2,

where ∥·∥2 denotes the Euclidean norm.

Proof. The claim follows from Cauchy-Schwarz inequality applied to a vector of coeffi-

cients (pα)α∈Nn
d
and the vector of monomial basis md(x), since

p(x) = md(x)
⊤(pα)α∈Nn

d
, for all x ∈ Rn.

Proposition D.2. For every x ∈ Rn and d ∈ N the following inequality holds

∥md(x)∥22 ≥ ∥m2d(x)∥2.
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Proof. Since both right-hand side and left-hand side of the inequality are non-negative

numbers, we can equivalently prove (md(x)
⊤md(x))

2 ≥ m2d(x)
⊤m2d(x) for all x ∈ Rn and

d ∈ N. Note that

m2d(x)
⊤m2d(x) =

∑
γ∈Nn

2d

x2γ1
1 x2γ2

2 . . . x2γn
n , ∀x ∈ Rn

and

(md(x)
⊤md(x))

2 =
∑

α,β∈Nn
d

x2α1+2β1

1 x2α2+2β2

2 . . . x2αn+2βn
n ,

∀x ∈ Rn.

Fix an arbitrary x ∈ Rn and d ∈ N. We will show that every term included

in m2d(x)
⊤m2d(x) is also included in (md(x)

⊤md(x))
2. Since both m2d(x)

⊤m2d(x) and

(md(x)
⊤md(x))

2 are sums of non-negative numbers for any given x ∈ Rn, we will prove

that (md(x)
⊤md(x))

2 ≥ m2d(x)
⊤m2d(x) for all x ∈ Rn and d ∈ N.

More specifically, we want to show that for any γ ∈ Nn
2d there exist α, β ∈ Nn

d such

that α + β = γ. For an arbitrary but fixed γ ∈ Nn
2d we will construct α ∈ Nn

d by setting

αi =


γi
2 , γi ≡ 0 (mod 2),

γi−1
2 , γi ≡ 1 (mod 2) ∧

∑i−1
j=1 αj >

∑i−1
j=1(γj − αj),

γi+1
2 , γi ≡ 1 (mod 2) ∧

∑i−1
j=1 αj ≤

∑i−1
j=1(γj − αj),

i = 1, 2, . . . , n. Then βi = γi − αi, i = 1, 2, . . . , n. We need to show that α, β ∈ Nn
d . It is

obvious that α + β = γ and that αi, βi ∈ N0, i = 1, 2, . . . , n and, therefore, it suffices to

show that
∑n

i=1 αi ≤ d and
∑n

i=1 βi ≤ d.

Denote o1 the number of cases when γi ≡ 1 (mod 2) ∧
∑i−1

j=1 αj ≤
∑i−1

j=1(γj − αj),

i = 1, 2, . . . , n and o2 the number of cases when γi ≡ 1 (mod 2) ∧
∑i−1

j=1 αj >
∑i−1

j=1(γj−αj),

i = 1, 2, . . . , n. Then it follows that

n∑
i=1

αi =
n∑

i=1

γi
2
+

1

2
(o1 − o2),

n∑
i=1

βi =
n∑

i=1

γi
2
+

1

2
(o2 − o1).

Firstly, we will show that o1 − o2 ∈ {0, 1}. Suppose that there are k odd numbers

among γ1, γ2, . . . , γn, where k ∈ {0, 1, 2, . . . , n}. If k = 0, then obviously o1 = o2 = 0 and

thus o1−o2 ∈ {0, 1}. If k ̸= 0, denote these odd numbers γi1 , γi2 , . . . , γik . If k ≡ 1 (mod 2),

then k = 2l− 1 for some l ∈ N and by construction of α we have αi1 =
γi1+1

2
, αi2 =

γi2−1

2
,
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. . . , αi2l−2
=

γi2l−2
−1

2
, αi2l−1

=
γi2l−1

+1

2
. Therefore, o1 = l and o2 = l − 1 and, therefore,

o1 − o2 = 1 ∈ {0, 1}. If k ≡ 0 (mod 2), then k = 2l for some l ∈ N. Again, by

construction of α we have αi1 =
γi1+1

2
, αi2 =

γi2−1

2
, . . . , αi2l−1

=
γi2l−1

+1

2
, αi2l =

γi2l−1

2
.

Therefore, o1 = o2 = l and, therefore, o1 − o2 = 0 ∈ {0, 1}.

Since o1 − o2 ∈ {0, 1}, we have shown that
∑n

i=1 αi ≥
∑n

i=1 βi. Now, we will show

that
∑n

i=1 αi ≤ d. It is evident that
∑n

i=1 αi ≤
∑n

i=1
γi
2
+ 1

2
. Moreover, since γ ∈ Nn

2d, we

have that
∑n

i=1 γi ≤ 2d. There are two cases to consider:

1.
∑n

i=1 γi ≤ 2d−1 < 2d. It automatically follows that
∑n

i=1
γi
2
+ 1

2
≤ d and, therefore,∑n

i=1 αi ≤ d.

2.
∑n

i=1 γi = 2d. However, that is possible if and only if k ≡ 0 (mod 2), which means

that o1 − o2 = 0 and, therefore,
∑n

i=1 αi =
∑n

i=1
γi
2
= d.

We have finally shown that d ≥
∑n

i=1 αi ≥
∑n

i=1 βi which completes the proof.
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